
MATLAB 7.0 Release Notes

The MATLAB® 7.0 Release Notes describe the changes introduced in the latest version of MATLAB
for Release 14. The following topics are discussed in these Release Notes:

Major MATLAB Changes
MATLAB 7.0 introduces many new features and improvements over previous releases. The most
important changes to be aware of are

• “Case-Sensitivity in Function and Directory Names” on page 1-43

• “Differences Between Built-Ins and M-Functions Removed” on page 1-43

• “New Features for Nondouble Data Types” on page 1-58

• “MATLAB Stores Character Data As Unicode” on page 1-44

Release Notes

New Features (p. 1-1) New features and enhancements introduced in this release

Platform Limitations (p. 2-1) Platform-related limitations to the MATLAB functionality
described in these Release Notes and in the MATLAB
documentation

Upgrading from an Earlier
Release (p. 3-1)

Changes in MATLAB other than new features that have been made
since MATLAB 6.5.1

Major Bug Fixes (p. 4-1) Particularly important bug fixes made since MATLAB 6.5.1.

If you are viewing these Release Notes in PDF form, please refer to
the HTML form of the Release Notes, using either the Help browser
or the MathWorks Web site and use the link provided.

Known Software and
Documentation Problems
(p. 5-1)

Significant problems that still exist in the MATLAB code or
documentation.

If you are viewing these Release Notes in PDF form, please refer to
the HTML form of the Release Notes, using either the Help browser
or the MathWorks Web site and use the link provided.

Printable Release Notes PDF version of these Release Notes

Contents
1
New Features

Desktop Tools and Development Environment Features . . 1-2

Mathematics Features . 1-23

Programming Features . 1-42

Graphics and 3-D Visualization Features 1-66

External Interfaces/API Features . 1-74

Creating Graphical User Interfaces (GUIDE) Features . . 1-85

2
Platform Limitations

Graphics Platform Limitations . 2-2

3
Upgrading from an Earlier Release

Desktop Tools and Development Environment Upgrade
Issues . 3-2

Mathematics Upgrade Issues . 3-5

Programming Upgrade Issues . 3-12

Graphics Upgrade Issues . 3-27
i

ii Contents
External Interface/API Upgrade Issues 3-28

Creating Graphical User Interface (GUIDE) Upgrade
Issues . 3-30

4
Major Bug Fixes

5
Known Software and Documentation Problems

6
MATLAB 6.5.1 Release Notes

New Features . 6-2

Major Bug Fixes . 6-11

Upgrading from an Earlier Release . 6-22

Known Software and Documentation Problems 6-23

7
MATLAB 6.5 Release Notes

New Features . 7-2

Major Bug Fixes . 7-43

Platform Limitations . 7-44

Upgrading from an Earlier Release . 7-49

Known Software and Documentation Problems 7-86

8
MATLAB 6.1 Release Notes

New Features . 8-2

Major Bug Fixes . 8-18

Upgrading from an Earlier Release . 8-23

Known Software and Documentation Problems 8-29
iii

iv Contents

1

New Features

This section introduces the new features and enhancements added in MATLAB 7.0 since
Version 6.5.1 (R13 SP1). If you are using the Help browser, view the New Features in Version 7 video
demos that highlight the major new features. Documentation of new MATLAB features is organized
into these categories:

• Desktop Tools and Development Environment Features (p. 1-2)

• Mathematics Features (p. 1-23)

• Programming Features (p. 1-42)

• Graphics and 3-D Visualization Features (p. 1-66)

• External Interfaces/API Features (p. 1-74)

• Creating Graphical User Interfaces (GUIDE) Features (p. 1-85)

If you are upgrading from a release earlier than R13 SP1, then you should also see “New Features” on
page 6-2 in the MATLAB 6.5.1 Release Notes.

1

1-2
1Desktop Tools and Development Environment Features
If you are using the Help browser, view the Desktop Tools and Development
Environment new features video demo and the Editor new features video demo
to see highlights of the new features.

Documentation of new features and enhancements in MATLAB 7.0 Desktop
Tools and Development Environment is organized by these topics:

• “Startup and Shutdown” on page 1-2

• “Desktop” on page 1-2

• “Running Functions—Command Window and History” on page 1-6

• “Help for Using MATLAB” on page 1-8

• “Workspace, Search Path, and File Operations” on page 1-9

• “Editing and Debugging M-Files” on page 1-13

• “Tuning and Managing M-Files” on page 1-18

• “Publishing Results” on page 1-22

Startup and Shutdown
MATLAB is now using Java (JVM) 1.4.2.

Desktop
See the complete “Desktop” documentation online.

Demo of MATLAB Desktop
If you are using the Help browser, watch the new Desktop and Command
Window video demo for an overview of the major functionality.

Arranging Documents
The MATLAB desktop now provides you with new options for arranging the
following types of documents:

• M-files and other files in the Editor/Debugger

• Arrays in the Array Editor

• Figure windows

• HTML documents in the MATLAB Web browser

Desktop Tools and Development Environment Features
You can dock these types of documents in the desktop, undock them from the
desktop so each is in its own separate window, or group undocked documents
together in their tool. You can now position the documents using these
features: tile, left/right split, top/bottom split, floating, or maximized. Use the
Window menu or toolbar icons to position documents.

Docking Tools and Documents. There are now dock buttons in the menu bars of
undocked tools and documents. Click a dock button to move the tool into the
desktop, or to move the document into its tool.

Document Bar. There is now a Document Bar in tools that support documents
that you use to go to open documents. It appears when there is more than one
maximized document open in a tool. You can hide or move the Document Bar
by selecting Desktop -> Document Bar menu options.

Saving Layouts. You can save desktop layouts. Select Desktop -> Save Layout
and provide a name. To restore a saved layout, select Desktop -> Desktop
Layout -> name.

Launch Pad. The Launch Pad tool was removed. Use the Start button instead.

Adding Your Own Toolbox to Start Button. Add your own toolbox to the Start button.
Select Start -> Desktop Tools -> View Source Files. Click Help in the
resulting dialog box for details.

Finding Files and Content
Search for files and directories, as well as for content within files by selecting
Edit -> Find Files from any desktop tool. For details, see “Finding Files and
Content Within Files” in the online documentation.

MATLAB Shortcuts
You can create and run MATLAB shortcuts, where a shortcut is an easy way to
run a group of MATLAB statements. A shortcut is like an M-file script, but
unlike an M-file, a shortcut does not have to be on the MATLAB search path or
in the current directory when you run it.

Create a shortcut by selecting Start -> Shortcuts -> New Shortcut and
completing the dialog box. Run the shortcut from the Start button.
1-3

1

1-4
You can also create a shortcut by dragging selected statements to the shortcut
toolbar. This adds the shortcut to the toolbar, from where you can then run it.
For details, see “Shortcuts for MATLAB” in the online documentation.

MATLAB Web Browser
MATLAB now displays HTML documents it produces in a new desktop tool, the
MATLAB Web browser. You can display HTML documents in this Web browser
using the web function.

The web function now opens the MATLAB Web browser by default, instead of
opening the MATLAB Help browser. Use the web function’s -helpbrowser
option to display files in the Help browser.

Menus

• You can now access debugging features from the Debug menu of most
desktop tools.

• There is no longer a desktop View menu, although some tools still have a
View menu.The Window menu in the desktop has changed. Use the new
Desktop menu to select a layout, and to open and close tools. Use the
Window menu to access open tools and documents, as well as to position
documents. The menus and the menu items in the desktop change,
depending on the current tool selected.

• The Web menu was removed. Access the items it contained from Help -> Web
Resources.

Keyboard Shortcuts
There is now a keyboard shortcut you can use to go to each tool and to each open
document. For example, use Ctrl+0 to go to the Command Window, and
Ctrl+Shift+0 to go to the most recently used Editor document. See the Window
menu for the shortcuts to go to currently open tools and documents.

There have been some changes to the keyboard shortcuts you use with desktop
tools. For example, Ctrl+Tab now moves you to the next open tool or group of
tools tabbed together. In previous releases, Ctrl+Tab moved you to the next
open document or tool. In MATLAB 7, use Ctrl+Page Down to move to the next
open document or tool in a tabbed group. For the complete list, see “Keyboard
Shortcuts” in the online documentation.

Desktop Tools and Development Environment Features
Drag and Drop
You can drag selected text or files between desktop tools. For example, you can

• Select text in the Editor and drag it to the Command Window, which cuts
and pastes it into the Command Window. You can use Ctrl while dragging
to copy selected text instead of just moving it.

• Select a file in the Current Directory browser and drag it to the Editor,
which opens the file in the Editor.

You can also drag selected text or files between desktop tools and external tools
and applications. For example, you can

• Select a MAT-file from the Microsoft Windows Explorer and drag it to the
Command Window, which loads the data into the MATLAB workspace.

• Select text from a page displayed in a Netscape browser and drag it to a file
in the Editor, which pastes the text into the file in the Editor.

Arranging Columns in Tools
In desktop tools that contain columns, you can drag a column to a new position.
For example, this includes the Current Directory browser, and the Help
browser Index and Search panes. Click a column head to sort by that column.
For some tools, you can click again to reverse the sort order.

When a column is too narrow to show all the information in it, position the
cursor over a long item in that column, and a tooltip displays showing the
complete content of the item.

Font and Color Preferences for Tools
Access font and color preferences for all desktop tools in the Fonts and Colors
preference panels. Select File -> Preferences -> Fonts or
File -> Preferences -> Colors. For more information, click the Help button in
the preferences dialog box, or see Fonts, Colors, and Other Preferences in the
online documentation.
1-5

1

1-6
Running Functions—Command Window and History
See the complete “Running Functions” documentation online.

Command Window Features
If you are using the Help browser, watch the new Desktop and Command
Window video demo for an overview of the major functionality.

Additions. These are new features in the Command Window.

• Tab completion now has a graphical interface. For example, type cos and
press the Tab key. A list of functions that begin with cos appears.
Double-click the function you want and MATLAB completes the name in the
Command Window. Alternatively, when the list of names appears, you can
type the next unique letter in the name, and the first name in the list that
matches it is selected. Continue typing unique letters to select the name you
want, and press Enter. Press Escape to clear the list without selecting a
name.

• There is a new preference that allows you to use arrow keys to navigate in
the Command Window instead of recalling history.

• The incremental search interface has been updated. It now indicates the
search direction. It is also case-sensitive when you enter uppercase letters in
the search field.

• Use the new commandwindow function to open the Command Window when it
is closed (for example, from an M-file), or to select the Command Window
when it is already open.

• On Macintosh platforms, you can now use Command+. (Command key and
period key) to stop execution of a running program.

Changes. These features operate differently in this release.

• When you include an ellipsis in a statement so that you can continue the
statement on the next line, any text you type after the ... on the same line
is considered to be a MATLAB comment and now is syntax highlighted as a
comment. In previous releases, the syntax highlighting did not indicate the
text after the ... as a comment.

Desktop Tools and Development Environment Features
• Evaluate selection (available from context menus for various tools) no longer
appends the selection to the statement at the prompt, but instead runs the
selection. Make a selection and press Enter or Return to append the
selection to the statement at the prompt and execute it.

• The default colors for syntax highlighting have been modified. Unterminated
strings are now maroon, while terminated strings are now purple. This is the
opposite of previous versions. Maroon is considered to be more of an
“alerting” color, resembling the default of red for errors, which is the reason
for the change. If you prefer the colors used in previous versions, change
them using preferences—see Syntax Highlighting Colors in the online
documentation.

In addition, arguments in statements entered using command syntax rather
than function syntax are highlighted as strings, emphasizing that variables
in command syntax are passed as literal strings rather than as their values.

• Stopping execution using Ctrl+C (^C) has changed. Windows and UNIX
platforms now respond similarly to Ctrl+C, and in general, stop execution
without the need for pause or drawnow statements in your M-files. For M-files
that run for a long time, or that call built-ins or MEX-files that take a long
time, Ctrl+C does not always effectively stop execution. In that event,
include a drawnow command in your M-file, for example, within a large loop.
Ctrl+C might be less responsive if you started MATLAB with the
-nodesktop option.

Command History Features

• If you are using the Help browser, watch the new Command history video
demo for an overview of the major functionality.

• Entries in the Command History tool now appear with syntax highlighting.

• Entries in the Command History now appear in a tree view so you can
minimize the length of the visible history. The top level nodes of the tree are
the dates/times for each session, and beneath that is the history for that
session. Click the - to the left of a date/time to hide the history entries for that
session. Click the + to the left of a date/time entry to show history entries for
that session.

• Use the new commandhistory function to open the Command History when
it is closed, and to select it when it is open.
1-7

1

1-8
• The default for saving the history has changed. Now, by default, MATLAB
saves the history file after five statements have been added to the history.
You can modify the frequency using Command History preferences.

Help for Using MATLAB
See the complete “Help” documentation online.

General Help and Documentation

• If you are using the Help browser, watch the new Help and Documentation
video demo for an overview of the major functionality.

• Documentation is automatically installed for all the products you install.
Documentation is no longer accessible from CD-ROMs. To access the
documentation for products not installed on your system, use
The MathWorks Web site,
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.
Because of this change, the docroot function is no longer needed and will not
be supported.

Help Browser
• The Index tab now has an alphabetical quick index, so you can choose a letter

to see entries starting with that letter. You can still type any index term in
the text box to go directly to that term. Index entries are now shown as links.
Entries that are merely headings do not go to a specific page and do not
appear as links.

• In the Search tab, you no longer select the type of search. Results are ordered
so reference pages appear first, followed by headings that include the search
terms. After performing a search, click the link at the bottom of the Search
pane to look for the same term in the technical support database on The
MathWorks Web site.

• As is true for all desktop tools, you can drag columns in the Index and Search
panes to reorder them, or click a column head to sort by that column.

• Add pages in the Help browser to favorites (also known as bookmarking
pages) by selecting Favorites -> Add to Favorites. The Favorites Editor
dialog box opens. Accept the default entries or modify the Label and click
Save. Access favorites from the Favorites menu or from the Start menu
Shortcuts item.

Desktop Tools and Development Environment Features
• Click the binoculars icon on the Display pane toolbar to search within the
page.

• The Help browser is now used only for MathWorks documentation installed
with your products. You can no longer enter a URL in the Title field of the
display pane. Instead run the web function to enter a URL in the Location
field. Links from the documentation to Web pages display the Web pages in
the MATLAB Web browser, not in the Help browser.

Help functions

• The new docsearch function allows you to execute a full text search of the
Help browser documentation from the Command Window.

• The help function now allows you to get help for methods and classes. For
details, see specific instructions in the release notes about using help and
doc for each product, or type help help.

Workspace, Search Path, and File Operations
See the complete “Workspace, Search Path, and File Operations”
documentation online.

• “MATLAB Workspace and Workspace Browser” on page 1-9

• “Array Editor” on page 1-10

• “Search Path” on page 1-11

• “File Operations” on page 1-11

MATLAB Workspace and Workspace Browser

• If you are using the Help browser, watch the new Workspace Browser video
demo for an overview of the major functionality.

• The Workspace browser now includes a Value column where you can see the
content of the variable, or a description of the content. Click the value in the
Value column to edit the content.

• Click a variable name (in the Name column) to rename the variable. To
create a copy of a variable, right-click and select Duplicate from the context
menu.
1-9

1

1-1
• Click the plot icon in the Workspace browser toolbar to plot the selected
variable. Choose from other applicable plots by clicking the arrow next to the
plot button. The function used to create the plot appears in the Command
Window so you can use it again later.

• Click the print button in the Workspace browser toolbar to print a view of the
current workspace.

• MAT-files are now compressed by default. For details on compressing
MAT-files, see “Compressed Data Support in MAT-Files” on page 1-59.

• Use the new function genvarname to construct a valid MATLAB variable
name from a given candidate, where the candidate can be a string or a cell
array of strings. For details, type help genvarname.

• The new function datatipinfo(x) displays information about the variable,
x.

Array Editor

• If you are using the Help browser, watch the new Array Editor video demo
for an overview of the major functionality.

• You can now view and edit the content of cell arrays and structures in the
Array Editor. For example, double-click a structure in the Workspace
browser to open it in the Array Editor. In the Array Editor, double-click an
element of the structure to open it as its own Array Editor document. You can
then view and edit the contents.

• You can select contiguous elements in an array, and then click the plot
button on the Array Editor toolbar to plot only the selected elements.
Click the arrow next to the plot button in the toolbar to select from other
applicable plots.

• You can print an array from the Array Editor. Select File -> Print to create
a print of the current variable.

• You can open arrays having up to 2^19 (524288) elements, which is eight
times more than the previous limit, 2^16 (65536).

• You can save a variable to a MAT-file from the Array Editor. Select File ->
Save and complete the resulting Save dialog box.
0

Desktop Tools and Development Environment Features
Search Path

• MATLAB now considers built-in files to be the same as other M-files on the
search path. For more information, see “File Operations, Workspace, and
Path” on page 3-3 in Upgrading from an Earlier Release.

• There is a new function, savepath, that saves the current search path to a
file, pathdef.m, so that you can use the same search path in future sessions.
Note that this function replaces path2rc.

• There is a new function, restoredefaultpath, that helps redefine the search
path file, pathdef.m, to include only files installed with MathWorks
products. Use this function to recover from problems with the path. If that
fails, run

restoredefaultpath; matlabrc.

• The genpath function now includes empty directories in the generated path
string.

• The which function now displays the pathname for built-in functions, as well
as for overloaded functions when only the overloaded functions are available.

File Operations

Finding Files and Content Within Files. From any desktop tool, select Edit -> Find
Files. Complete the resulting dialog box to find specified files or files
containing specified text in the directories you choose. Double-click a file in the
results listing to open it. For details, see “Finding Files and Content Within
Files” in the online documentation.
1-11

1

1-1
Preventing Accidental File Deletion. Use the new recycle function or the General
preference for the delete function to send files you remove using the delete
function to the Recycle Bin on Windows, to the Trash Can on Macintosh, or to
a /tmp/MATLAB_Files_timestamp directory on UNIX systems. You can then
recover any accidentally deleted files from these locations.

Current Directory Browser Enhancements.

• If you are using the Help browser, watch the new Current Directory Browser
video demo for an overview of the major functionality.

• You can access source control system features from the Current Directory
browser. Right-click a file or directory, and from the context menu, select
Source Control and then select the source control function you want to use.
2

Desktop Tools and Development Environment Features
• To open a file using an external application, select Open Outside MATLAB
from the context menu. For example, if you select myfile.doc, Open
Outside MATLAB opens myfile.doc in Microsoft Word, assuming you have
the .doc file association configured to launch Word.

• Using the Current Directory browser, you can now copy and paste
directories, including the entries contents.

• As is true for all desktop tools, you can drag columns in the Current
Directory browser to reorder them, or click a column head to sort by that
column. For an item that does not fit in its column, you can hover over it to
see the full name of the item.

• The current directory field appears in the Current Directory browser only
when the Current Directory browser is undocked from the MATLAB
desktop. When the Current Directory browser is docked in the MATLAB
desktop, use the current directory text field in the desktop toolbar.

Visual Directory and Directory Reports in the Current Directory Browser. There are new
tools accessible from the Current Directory browser for tuning and managing
M-files. For details, see “Visual Directory Tool in the Current Directory
Browser” on page 1-18 and “Directory Reports in the Current Directory
Browser” on page 1-19.

Editing and Debugging M-Files
If you are using the Help browser, view the Editor new features video demo to
see highlights of the major new features.

See the complete “M-File Editing and Debugging” documentation online.

• “Opening, Arranging, and Closing Documents” on page 1-14

• “Visual Changes” on page 1-14

• “Entering Statements” on page 1-15

• “Finding and Replacing Text” on page 1-16

• “Printing M-Files” on page 1-16

• “Breakpoints and Debugging” on page 1-16

• “Rapid Code Iteration Using Cells” on page 1-17

• “Preferences for the Editor/Debugger” on page 1-18
1-13

1

1-1
Opening, Arranging, and Closing Documents

• You can drag a file onto Editor to open it. For example, drag a text file from
Windows Explorer onto the Editor.

• There is now an Editor/Debugger preference you can set to automatically
remove autosave files when you close the source file. Select Preferences ->
Editor/Debugger -> Autosave, and under Close options, select the
Automatically delete autosave files check box.

• To move from an Editor document to the Command Window, press Ctrl+0.
To move back to the Editor document, press Ctrl+Shift+0.

• When you close the last open document in the Editor, the Editor remains
open.

• When a file is open in the Editor and you open that same file outside of
MATLAB and make changes to it, the Editor automatically updates the file
to includes the changes you made outside the Editor. This only applies if you
did not make any changes to the file in the Editor. If you want to be prompted
before the Editor updates the file, clear the Editor/Debugger preference for
automatically reloading files.

• In the previous version, you used a preference to automatically open files
when debugging. Now, instead of using a preference, you select Open
M-Files When Debugging from the Debug menu in any desktop tool.

With this item selected, when you run an M-file containing breakpoints, the
the file opens in the Editor/Debugger when MATLAB encounters a
breakpoint.

Visual Changes

• The Editor now supports syntax highlighting for other languages,
specifically C/C++, Java, and HTML. Use Editor language preferences to
change the colors for the syntax highlighting.

• In edit mode, datatips are now off by default. Select the preference to display
them in edit mode. Datatips display until you move the cursor. Datatips are
always on in debug mode.

• There is now a faint line at column 75, which serves as a useful reminder of
where text would be cut off when printing the document. Remove the line or
change the column at which the line appears using Editor/Debugger Display
preferences.
4

Desktop Tools and Development Environment Features
• The feature Text -> Balance Delimiters has been removed.

• The default colors for syntax highlighting M-files have been modified.
Unterminated strings are now maroon, while terminated strings are now
purple. This is the opposite of previous versions. Maroon is considered to be
more of an “alerting” color, resembling the default of red for errors, which is
the reason for the change. If you prefer the colors used in previous versions,
change them using preferences—see “Syntax Highlighting Colors” in the
online documentation.

In addition, arguments in statements entered using command syntax rather
than function syntax are highlighted as strings, emphasizing that variables
in command syntax are passed as literal strings rather than as their values.

Entering Statements

• You can create a block comment in an M-file using any text editor, that is,
you can comment out contiguous lines of code. Type %{ on the line before the
first line of the comment and %} following the last line of the comment. The
lines in between are considered to be comments. Do not include any code on
the lines with the block comment symbols. You can also nest block
comments. See “Commenting Using Any Text Editor” for details.

• To change the case of selected text, select the text and then press:

- Alt+U, U to change all text to upper case

- Press Alt+U, L to change all text to lower case

- Press Alt+U, R to change the case of each letter

• MATLAB now supports nested functions and the Editor provides preferences
regarding how to indent them.

• When you press the Insert key, text entry is done in overwrite mode and the
cursor assumes a block shape. Press the Insert key again to return to insert
mode.
1-15

1

1-1
Finding and Replacing Text

• You can find directories, files, and content within multiple files. Select
Edit -> Find Files. For details, see “Finding Files and Content Within Files”
in the online documentation.

• The incremental search interface has been updated. It now indicates the
search direction. It is also case-sensitive when you enter uppercase letters in
the search field.

Printing M-Files
Page setup options differ slightly from previous versions.

Breakpoints and Debugging

• You can specify conditional breakpoints in an M-file. MATLAB only stops at
the line with the breakpoint if the condition is met. Conditional breakpoints
have a yellow breakpoint icon, which you can copy and paste to other lines.

• You can disable standard and conditional breakpoints. MATLAB ignores a
disabled breakpoint until you enable it again. A disabled breakpoint icon has
an X through it.

• Set error breakpoints for all files by selecting Debug -> Stop If
Errors/Warnings, and then completing the resulting dialog box. You can
specify a message identifier for an error or warning breakpoint so that
MATLAB stops only if it encounters the specified error or warning message.

• Enhancements to debugging functions include dbstop if caught error,
dbclear if caught error, and dbclear if all error. The dbstop if all
error option has been grandfathered and will not be supported in future
versions. To specify a message identifier, use dbstop if error ID, dbstop
if caught error ID, dbstop if warning ID, and the corresponding dbclear
options. The dbstatus function has been updated to reflect the changes to
dbstop and dbclear.
6

Desktop Tools and Development Environment Features
• The dbstop function has been updated to support nested and anonymous
functions. See the dbstop reference page for details.

You cannot use the Editor/Debugger GUI to set breakpoints in anonymous
functions, but must use the dbstop function instead. Note that when you
save a file in the Editor/Debugger that contains breakpoints in anonymous
functions, those breakpoints are cleared. They are also cleared when you run
an unsaved file from the Editor/Debugger GUI, because running first saves
the file.

• The dbstack function has been updated to supported nested functions. See
the dbstack function reference page and the “Editing and Debugging”
upgrade issues for more information.

• The dbstatus function has been updated to support conditional breakpoints.
See the dbstatus function reference page and the “Editing and Debugging”
upgrade issues for more information.

• You can access useful tools for M-files from the Editor/Debugger. From the
Tools menu, select Check Code with M-Lint, Show Dependency Report,
or Open Profiler. For details about these tools, see “Tuning and Managing
M-Files” on page 1-18.

• MATLAB now uses a new notation for reporting the path of functions,
subfunctions, and nested functions. As an example, A/B>C/D means directory
A, file B, (sub)function C within the file B, and nested function D within C.

Rapid Code Iteration Using Cells
If you are using the Help browser, watch the new Rapid Code Iteration Using
Cells video demo for an overview of the major functionality.

In the Editor, cell features allow you to easily make changes to values in a
section of an M-file to readily see the impact of the changes. First, you define
cells in a file, then evaluate a cell or cells, iterate values in the cell, and then
reevaluate the cell(s). Cells also allow you to publish M-file code and results to
popular formats, such as HTML and Microsoft Word. For details, see “Rapid
Code Iteration Using Cells” in the online documentation.
1-17

1

1-1
Preferences for the Editor/Debugger

• There is now a preference that allows you to add a new line to end of a file
upon saving.

• The feature that instructs M-files to open automatically when debugging is
no longer in preferences but is now accessible from the Debug menu in all
desktop tools.

Tuning and Managing M-Files
If you are using the Help browser, watch the new Directory Reports video demo
for an overview of the major functionality.

See the complete “Tuning and Managing M-Files” documentation online. Use
these tools to fine tune and manage your M-files, and to prepare them for
distribution to other users.

• “Visual Directory Tool in the Current Directory Browser” on page 1-18

• “Directory Reports in the Current Directory Browser” on page 1-19

• “Profiler for Measuring Performance” on page 1-21

Visual Directory Tool in the Current Directory Browser
The Visual Directory view of the Current Directory provides useful information
about the M-files in a directory. It can help you polish M-files before providing
them to others to use.

Click the Show Visual Directory button on the Current Directory browser
toolbar. The view changes—see the following figure for an example. To return
to the Classic view of the Current Directory browser, click the button again.
For more information, see “Visual Directory in Current Directory Browser” in
the online documentation.
8

Desktop Tools and Development Environment Features
Directory Reports in the Current Directory Browser
In the Current Directory browser, select View -> Directory Reports and select
the type of report to run. The report appears as an HTML document in the
MATLAB Web browser. A summary of the reports follows. For more
information, see “Directory Reports in Current Directory Browser” in the
online documentation.

M-Lint Code Check Report. The M-Lint report displays potential errors and
problems, as well as opportunities for improvement in your code. For example,
one common message is that a variable is defined but never used. You can also
produce an M-Lint report for specified files using the mlint function, or run the
M-Lint report from the Editor/Debugger or Profiler.
1-19

1

1-2
0

Desktop Tools and Development Environment Features
TODO/FIXME Report. The TODO/FIXME report shows M-files that contain text
strings you included as notes to yourself, such as TODO.

Help Report. The Help report presents a summary view of the help component
of your M-files. Use this information to help you identify files of interest or to
help you identify files that lack help information.

Contents Report. The Contents report displays information about the integrity of
the Contents.m file for the directory. A Contents.m file is a file you create that
provides a brief description for relevant M-files in the directory. When you type
help followed by the directory name, such as help mydemos, MATLAB displays
the information in the Contents.m file. Use the Contents report to help you
clean up and maintain your Contents.m file. If there is no Contents.m file, use
the Contents report to create one.

Dependency Report. The Dependency report shows all M-files called by each
M-file, or in other words, shows all children of each M-file. Use this report to
determine all files you need to provide to someone who wants to run an M-file.

File Comparison Report. The File Comparison report identifies the differences
between two files in the current directory. For example, you can easily compare
an autosaved version of a file to the latest version of the file.

Coverage Report. Run the Coverage report after you run the Profile report to
identify what percentage of the file was executed when it was profiled.

Profiler for Measuring Performance

• Access the Profiler from the Desktop menu or the Editor/Debugger Tools
menu.

• In the Profiler summary report, click a column name to sort the report by
that column.
1-21

1

1-2
• In the Profiler detail report, specify options to show busy lines (lines where
the most time was spent) and to show the file listing (the M-file code). Other
options allow you to run the M-Lint Code Check report, which provides
messages for improving the file, and the Coverage report, which indicates
how much of the file was exercised during profiling. For more information
about these reports, see “Directory Reports in Current Directory Browser” in
the online documentation. After selecting an option in the detail report, click
Refresh to update the report. The performance acceleration information in
the detail report has been removed.

• The profile report previously supported in MATLAB is no longer available.
This was the report you generated by running profile report or
profreport. There is a new function, profsave that replaces profreport.
The profsave function saves a static version of the HTML profile report.

Publishing Results

Publishing to HTML, XML, LaTeX, Word, and PowerPoint.

If you are using the Help browser, watch the new Publishing M Code from the
Editor video demo for an overview of the major functionality.

You can publish M-files to HTML, XML, LaTeX, Word, and PowerPoint
documents. The published documents can include code, formatted comments,
and results, such as graphs in Figure windows. Use cells and cell publishing
features in the Editor/Debugger. For details, see “Publishing to HTML, XML,
LaTeX, PowerPoint, and Word Using Cells” in the online documentation.

Notebook. If you currently use Notebook, consider using cell publishing from
the Editor instead, which provides more features and flexibility for most
applications.

Notebook has been improved with regards to speed and stability, with a few
minor changes in operation. The improvements were available via a
Web-downloadable update to MATLAB version 6.5, and are now part of
MATLAB version 7. For details about the differences, see Solution 36072 on the
MathWorks Web site.
2

Mathematics Features
1Mathematics Features
MATLAB 7.0 adds the following mathematics features and enhancements:

• “Nondouble Arithmetic” on page 1-25

• “New Class and Data Inputs for eps” on page 1-25

• “New Class Inputs for realmax and realmin” on page 1-26

• “New Functions intmax and intmin” on page 1-27

• “New Warnings for Integer Arithmetic” on page 1-27

• “New Class Inputs for ones, zeros, and eye” on page 1-29

• “New Class and Size Inputs for Inf and NaN” on page 1-29

• “New Class Inputs for sum” on page 1-30

• “New Functions for Numerical Data Types” on page 1-30

• “complex Now Accepts Inputs of Different Data Types” on page 1-31

• “Bit Functions Now Work on Unsigned Integers” on page 1-31

• “New Function linsolve for Solving Systems of Linear Equations” on
page 1-32

• “New Function accumarray for Constructing Arrays with Accumulation” on
page 1-32

• “Enhancements to Discrete Fourier Transform Functions” on page 1-33

• “Enhancements to lscov” on page 1-33

• “Enhanced Functions for Computational Geometry” on page 1-34

• “New and Enhanced Functions for Ordinary Differential Equations (ODEs)”
on page 1-34

• “New Output Function for Optimization Functions” on page 1-35

• “New Support for Interpolation Functions” on page 1-35

• “Enhanced sort Capabilities and Performance” on page 1-37

• “New Input Argument for Incomplete Gamma Function” on page 1-37

• “New Function quadv Integrates Complex, Array-Valued Functions” on
page 1-37

• “New Form for Generalized Hessian” on page 1-38
1-23

1

1-2
• “New Output for polyeig” on page 1-38

• “New Trigonometric Functions For Angles in Degrees” on page 1-38

• “Overriding the Default BLAS Library on Intel/Windows Systems” on
page 1-40

New Nondouble Mathematics Features
MATLAB Version 7.0 now supports many arithmetic operations and
mathematical functions on the following nondouble MATLAB data types:

• single

• int8 and uint8

• int16 and uint16

• int32 and uint32

Most of the built-in MATLAB functions that perform mathematical operations
now support inputs of type single. In addition, the arithmetic operators and
the functions sum, diff, colon, and some elementary functions now support
integer data types.

This section covers the following topics:

• “Nondouble Arithmetic” on page 1-25

• “New Class and Data Inputs for eps” on page 1-25

• “New Class Inputs for realmax and realmin” on page 1-26

• “New Class Inputs for ones, zeros, and eye” on page 1-29

• “New Functions intmax and intmin” on page 1-27

• “New Warnings for Integer Arithmetic” on page 1-27

Note In Version 7.0, MATLAB only supports mathematical operations on
nondouble data types for built-in functions; it does not support these
operations for M-file functions unless otherwise stated in the M-file help.
4

Mathematics Features
Nondouble Arithmetic
This section describes how MATLAB performs arithmetic on nondouble data
types.

Single Arithmetic. You can now combine numbers of type single with numbers of
type double or single. MATLAB performs arithmetic as if both inputs had
type single and returns a result of type single. For more information, see
“Single-Precision Mathematics” in the online MATLAB documentation.

Integer Arithmetic. You can now combine numbers of an integer data type with
numbers of the same integer data type or type scalar double. MATLAB
performs arithmetic as if both inputs had type double and then converts the
result to the same integer data type.

MATLAB computes operations on arrays of integer data type using saturating
integer arithmetic. Saturating means that if the result is greater than the
upper bound of the integer data type, MATLAB returns the upper bound.
Similarly, if the result is less than the lower bound of the data type, MATLAB
returns the lower bound. For more information, see “Integer Mathematics” in
the online MATLAB documentation.

New Class and Data Inputs for eps
You can now call the function eps with the syntax

eps(x)

If x has type double, eps(x) returns the distance from x to the next largest
double-precision floating point number. This is a measure of the accuracy of x
as a double-precision number. eps(1) returns the same value as eps with no
input argument.

You can now replace expressions of the form

if Y < eps * abs(X)

 with

if Y < eps(X)

If x has type single, eps(x) returns the distance from x to the next largest
single-precision floating point number. This is a measure of the accuracy of x
as a single-precision number.
1-25

1

1-2
The command

eps('single')

ans =

 1.1921e-007

returns the same value as eps(single(1)). The value of eps('single') is the
same as single(2^-23). The command eps('double') returns the same result
as eps.

See “eps in Double and Single-Precision Arithmetic” in the online MATLAB
documentation for more information.

New Class Inputs for realmax and realmin
You can now call the function realmax with the syntax

realmax('single')

ans =

 3.4028e+038

which returns the largest single-precision number. Similarly,

realmin('single')

returns the smallest single-precision number.

The commands realmax('double') and realmin('double') return the same
results as realmax and realmin, respectively. See “Largest and Smallest
Numbers” in the online MATLAB documentation for more information.
6

Mathematics Features
New Functions intmax and intmin
Two new functions, intmax and intmin, return the largest and smallest
numbers, respectively, for integer data types. For example,

intmax('int8')

ans =

 127

returns the largest number of type int8. See “Largest and Smallest Values for
Integer Data Types” in the online MATLAB documentation for more
information.

New Warnings for Integer Arithmetic
This section describes four new warning messages for integer arithmetic in
Version 7.0. While these warnings are turned off by default, you can turn
them on as a diagnostic tool or to warn of behavior in integer arithmetic that
might not be expected.

To turn all four warning messages on at once, enter

intwarning on

Integer Conversion of Noninteger Values. MATLAB can now return a warning when
it rounds up a number in converting to an integer data type. For example,

int8(2.7)
Warning: Conversion rounded non-integer floating point value to
nearest int8 value.

ans =

 3
1-27

1

1-2
Integer Conversion of NaN. When MATLAB converts NaN (Not-a-Number) to an
integer data type, the result is 0. MATLAB can now return a warning when this
occurs. For example,

int16(NaN)
Warning: NaN converted to int16(0).

ans =

 0

Integer Conversion Overflow. MATLAB can now return a warning when you
convert a number to an integer data type and the number is outside the range
of the data type. For example,

int8(300)
Warning: Out of range value converted to intmin('int8') or
intmax('int8').

ans =

 127

Integer Arithmetic Overflow. MATLAB can now return a warning when the result
of an operation on integer data types is either NaN or outside the range of that
data type. For example,

int8(100) + int8(100)
Warning: Out of range value or NaN computed in integer arithmetic.

ans =

 127

To turn all of these warnings off at once, enter

intwarning off
8

Mathematics Features
New Class Inputs for ones, zeros, and eye
You can now call ones or zeros with an input argument specifying the data
type of the output. For example,

ones(m, n, p, ..., 'single')

or

ones([m, n, p, ...], 'single')

returns an m-by-n-by-p-by ... array of type single containing all ones. zeros
uses the same syntax.

You can now call eye with this input argument for two-dimensional arrays. For
example,

eye(m, 'single')

returns an m-by-m identity matrix of type single. The command

eye(m, n, 'int8')

returns an m-by-n array of type int8.

New Class and Size Inputs for Inf and NaN
The functions Inf and NaN now accept inputs that enable you to create Infs or
NaNs of specified sizes and floating-point data types. As examples,

• Inf('single') or NaN('single') create the single-precision
representations of Inf and NaN, respectively.

• Inf(m,n,p, ...) or NaN(m,n,p,...) create m-by-n-by-p-by-... arrays of
Infs or NaNs, respectively.

See the reference pages for Inf and NaN for more information.
1-29

1

1-3
New Class Inputs for sum
The following new input arguments for sum control how the summation is
performed on numeric inputs:

• s = sum(x,'native') and s = sum(x, dim,'native') accumulate in the
native type of its input and the output s has the same data type as x. This is
the default for single and double.

• s = sum(x,'double') and s = sum(x, dim, 'double') accumulate in
double-precision. This is the default for integer data types.

In Version 7.0, sum applied to a vector of type single performs single
accumulation and returns a result of type single. In other words, sum(x) is the
same as sum(x, 'native') if x has type single. This is a change in the
behavior of sum from previous releases. To make sum accumulate in double, as
in previous releases, use the input argument 'double'.

New Functions for Numerical Data Types
MATLAB 7.0 contains three new functions for detecting and converting data
types:

• cast enables you to cast a variable to a different data type or class

• isfloat enables you to detect floating-point arrays. isfloat(A) returns 1 if
A has type double or single and 0 otherwise. isfloat(A) is the same as
isa(A,'float').

• isinteger enables you to detect integer arrays. isinteger(A) returns 1 if A
has integer data type and 0 otherwise. isinteger(A) is the same as
isa(A,'integer')
0

Mathematics Features
complex Now Accepts Inputs of Different Data
Types
The function complex now accepts inputs of different data types when you use
the syntax

complex(a,b)

according to the following rules:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the same
integer data type or type scalar double, and c has the same integer data
type.

Bit Functions Now Work on Unsigned Integers
The following functions now work on unsigned integer inputs:

• bitand

• bitcmp

• bitget

• bitor

• bitset

• bitshift

• bitxor

Instead of using flints (integer values stored in floating point) to do your bit
manipulations, consider using unsigned integers, as a more natural
representation of bit strings. Instead of using bitmax, use the intmax function
with the appropriate class name. For example, use intmax('uint32') if you
are working with unsigned 32 bit integers.

In addition, the function bitcmp now accepts the following new syntax for
inputs of type uint8, uint16, and uint32:

bitcmp(A)

bitcmp now uses the data type of A to determine how to take the bitwise
complement.
1-31

1

1-3
New Function linsolve for Solving Systems of
Linear Equations
The new linsolve function enables you to solve systems of linear equations of
the form Ax = b more quickly when the matrix of coefficients A has a special
form, such as upper triangular. When you specify one of these special types of
systems, linsolve is faster than mldivide or \ (backslash) because it does not
check whether the matrix actually has the form you specify.

Note If the matrix A does not have the form you specify in opts, linsolve
returns incorrect results because it does not perform error checking. If you are
unsure of the form of A, use mldivide, or \ instead.

New Function accumarray for Constructing Arrays
with Accumulation
The new accumarray function enables you to construct an array with
accumulation. The following example uses accumarray to construct a 5-by-5
matrix A from a vector val. The function accumarray adds the entries of val to
A at the indices specified by the matrix ind, which has the same number of rows
as val. If an index in ind is repeated, the entries of val accumulate at the
corresponding entry of A.

ind = [1 2 5 5;1 2 5 5]';
val = [10.1 10.2 10.3 10.4]';
A = accumarray(ind, val)

A =

 10.1000 0 0 0 0
 0 10.2000 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 20.7000

To get the (5,5) entry of A, accumarray adds the entries of val corresponding
to repeated pair of indices (5,5).

A(5, 5) = 10.3 + 10.4
2

Mathematics Features
In general, if ind has ndim columns, A will be an N-dimensional array with ndim
dimensions, whose size is max(ind).

Enhancements to Discrete Fourier Transform
Functions
The new function fftw enables you to optimize the speed of the discrete Fourier
transform (DFT) functions fft, ifft, fft2, ifft2, fftn, and ifftn. You can
use fftw to set options for a tuning algorithm that experimentally determines
the fastest algorithm for computing a discrete Fourier transform of a particular
size and dimension at run time.

The functions ifft, ifft2, and ifftn now accept the input argument
'symmetric', which causes these functions to treat the array X as conjugate
symmetric. This option is useful when X is not exactly conjugate symmetric,
merely because of round-off error.

Enhancements to lscov
The command

lscov(A,b,V)

now accepts either a weight vector or a covariance matrix for V. If you enter
lscov(A,b) without a third argument, lscov uses the identity matrix for V.

The command lscov(A, b, V, alg) now enables you to specify the algorithm
used to compute the result when V is a matrix. You can specify alg to be one of
the following:

• 'chol' uses the Cholesky decomposition of V

• 'orth' uses the orthogonal decomposition of V

 The command

[x stdx mse] = lscov(...)

now returns mse, the mean squared estimate (MSE).

The command

[x stdx mse S] = lscov(...)

now returns S, the estimated covariance matrix of x.
1-33

1

1-3
In addition, lscov can now accept a design matrix A that is rank deficient and
a covariance matrix, V, that is positive semidefinite.

Enhanced Functions for Computational Geometry
The following functions, which perform geometric computations on a set of
points in N-dimensional space, now provide many new options:

• convull — Compute convex hulls

• convhulln — Compute N-dimensional convex hulls

• delaunay — Construct Delaunay triangulation

• delaunay3 — Construct 3-dimensional Delaunay tessellations

• delaunayn — Construct N-dimensional Delaunay tessellations

• griddata — Data gridding and surface fitting

• griddata3 — Data gridding and surface fitting for 3-dimensional data

• griddatan — Data gridding and hypersurface fitting (dimensions >= 2)

• vornonoi — Construct Voronoi diagrams

• voronoin — Construct N-dimensional Voronoi diagrams

These functions now accept an input cell array options that gives you greater
control over how they perform calculations. These functions use the software
Qhull, created at the National Science and Technology Research Center for
Computation and Visualization of Geometric Structures (the Geometry
Center). For more information on the available options, see
http://www.qhull.org/.

New and Enhanced Functions for Ordinary
Differential Equations (ODEs)
MATLAB 7.0 provides two new functions for solving implicit ODEs and
extending solutions to ODEs, along with several enhancements to existing
ODE-related functions:

• ode15i, which is new in Version 7.0, provides the capability to solve fully
implicit ODE and DAE problems of the form with consistent
initial conditions, i.e., . ode15i provides an interface that is
similar to that of the other MATLAB ODE solvers and is as easy to use. A
supporting function decic helps you calculate consistent initial conditions.

f t y y ′, ,() 0=
f t y0 y0

′, ,() 0=
4

Mathematics Features
The existing functions odeset and odeget enable you to set integration
properties that affect the problem solution. deval evaluates the numerical
solution obtained with ode15i.

• odextend, which is new in Version 7.0, enables you to extend the solution to
an ODE created by an ODE solver.

• bvp4c can now solve multipoint boundary value problems. To see an example
of how to solve a three-point boundary value problem, enter threebvp. To see
the code for the example, enter edit threebvp. Enter help bvp4c to learn
more about bvp4c.

• deval can now evaluate the derivative of the solution to an ODE as well as
the solution itself. The command
[psxint, spxint] = deval(sol,xint)

returns spxint, the value of the derivative to sol.

New Output Function for Optimization Functions
In MATLAB 7.0, you can create an output function for several optimization
functions in MATLAB. The optimization function calls the output function at
each iteration of its algorithm. You can use the output function to obtain
information about the data at each iteration or to stop the algorithm based on
the current values of the data. You can use the output function with the
following optimization functions:

• fminbnd
• fminsearch
• fzero

 See “Calling an Output Function Iteratively” for an example of how to use the
output function.

New Support for Interpolation Functions
The following interpolation functions now have enhanced features:

• interp1 — The command YI = interp1(X,Y,XI) now accepts a
multidimensional array Y and returns an array of the correct dimensions. If
Y is an array of size [n,m1,m2,...,mk], interp1 performs interpolation for
1-35

1

1-3
each m1-by-m2-by-...-mk value in Y. If XI is an array of size [d1,d2,...,dj],
YI has size [d1,d2,...,dj,m1,m2,...,mk].

The command pp = interp1(X,Y,'method','pp') uses the specified
method to generate the piecewise polynomial form (ppform) of Y. See the
reference page for interp1 for information about the available methods.

• interp2, interp3, and interpn — You can now pass in a scalar argument,
ExtrapVal, which these functions return for any values of XI and YI that lie
outside the range of values spanned by X and Y defining the grid. For
example,
ZI = interp2(X,Y,Z,XI,YI,'method',ExtrapVal)

returns the value of ExtrapVal for any values of XI or YI that are outside the
range of values spanned by X and Y.

• ppval now accepts multidimensional arrays returned by the spline function
using the syntax
 YY = ppval(spline(X,Y), XX)

Each entry of YY is obtained by evaluating spline(X,Y) at the corresponding
value of XX.

• spline — The command YY = spline(X,Y,XX) now accepts a
multidimensional array Y and returns an array of the correct dimensions.
Note that YY = spline(X,Y,XX) is the same as
YY = ppval(spline(X,Y), XX).

If spline(X, Y) is scalar-valued, then YY is of the same size as XX. If
spline(X, Y)is [D1,..,Dr]-valued, and XX has size [N1,...,Ns], then YY
has size [D1,...,Dr, N1,...,Ns], where YY(:,...,:, J1,...,Js) is the
value of spline(X, Y) at XX(J1,...,Js). There are two exceptions to this
rule:

- N1 is ignored if XX is a row vector, that is, if N1 is 1 and s is 2.

- spline ignores any trailing singleton dimensions of XX.
6

Mathematics Features
Enhanced sort Capabilities and Performance

Improved Performance
sort performance has been improved for numeric arrays of randomly ordered
data. Although there is some performance improvement for all such numeric
arrays, you should see the greatest improvement for integer arrays and
multidimensional arrays.

Sort Direction
A new argument, mode, lets you specify whether sort returns the sorted array
in ascending or descending order.

New Input Argument for Incomplete Gamma
Function
The incomplete gamma function, gammainc, now accepts the input argument
tail, using the syntax

Y = gammainc(X,A,tail)

tail specifies the tail of the incomplete gamma function when X is
non-negative. The choices are for tail are 'lower' (the default) and 'upper'.
The upper incomplete gamma function is defined as

1 - gammainc(x,a)

New Function quadv Integrates Complex,
Array-Valued Functions
The new function quadv integrates complex, array-valued functions.
1-37

1

1-3
New Form for Generalized Hessian
The function hess has a new syntax of the form

[AA,BB,Q,Z] = hess(A,B)

where A and B are square matrices, and returns an upper Hessenberg matrix
AA, an upper triangular matrix BB, and unitary matrices Q and Z such that

Q*A*Z = AA

and

Q*B*Z = BB

New Output for polyeig
The function polyeig can now return a vector of condition numbers for the
eigenvalues, when you call it with the syntax

[X,E,S] = polyeig(A0,A1,..,Ap)

At least one of A0 and Ap must be nonsingular. Large condition numbers imply
that the problem is close to one with multiple eigenvalues.

New Trigonometric Functions For Angles in Degrees
The following new functions compute trigonometric functions of arguments in
degrees.

Function Purpose

sind Compute the sine of an argument in degrees

cosd Compute the cosine of an argument in degrees

tand Compute the tangent of an argument in degrees

cotd Compute the cotangent of an argument in degrees

secd Compute the secant of an argument in degrees

cscd Compute the cosecant of an argument in degrees
8

Mathematics Features
The following new functions compute the inverse trigonometric functions are
return the answer in degrees:

New Functions for Computing Logarithms,
Exponentials, and nth Roots
The following new functions compute logarithms, exponentials, and nth roots
of real numbers.

Function Purpose

asind Compute the inverse sine of an argument and return answer in
degrees

acosd Compute the inverse cosine of an argument and return answer
in degrees

atand Compute the inverse tangent of an argument and return answer
in degrees

acotd Compute the inverse cotangent of an argument and return
answer in degrees

asecd Compute the inverse secant of an argument and return answer
in degrees

acscd Compute the inverse cosecant of an argument and return
answer in degrees

Function Purpose

expm1 Compute exp(x)-1 accurately for small values of x

log1p Compute log(1+x) accurately for small values of x

nthroot Compute the real nth root of a real number
1-39

1

1-4
Overriding the Default BLAS Library on
Intel/Windows Systems

Note Intel has used aggressive optimization to compile MKL. This
optimization causes NaNs to be treated as zeros in some situations.
Calculations that do not involve NaNs are done correctly. In some calculations
that do involve NaNs, the NaNs will not propagate.

MATLAB uses the Basic Linear Algebra Subroutines (BLAS) libraries to speed
up matrix multiplication and LAPACK-based functions like eig, svd, and \
(mldivide). At start-up, MATLAB selects the BLAS library to use.

For R14, MATLAB still uses the ATLAS BLAS libraries, however, on Windows
systems running on Intel processors, you can switch the BLAS library that
MATLAB uses to the Math Kernel Library (MKL) BLAS, provided by Intel.

If you want to take advantage of the potential performance enhancements
provided by the Intel BLAS, you can set the value of the environment variable
BLAS_VERSION to the name of the MKL library, mkl.dll. MATLAB uses the
BLAS specified by this environment variable, if it exists.

To set the BLAS_VERSION environment variable, follow this procedure:

1 Click the Start button, go to the Settings menu, and select Control Panel.

2 On the Control Panel menu, select System.

3 In the System Properties dialog box, click the Advanced tab.

4 On the Advanced panel, click the Environment Variables button.

5 In the Environment Variables dialog box, click the New button in the User
variables section.

6 In the New User Variable dialog box, enter the name of the variable as
BLAS_VERSION and set the value of the variable to the name of the MKL
library: mkl.dll.
0

Mathematics Features
Multithreading Disabled in Intel Math Kernel Library (MKL) BLAS
The Intel Math Kernel Library (MKL) is multithreaded in several areas. By
default, this threading capability is disabled. To enable threading in the MKL
library, set the value of the OMP_NUM_THREADS environment variable. Intel
recommends setting the value of the OMP_NUM_THREADS variable to the number
of processors you want to use in your application.

To set the value of this environment variable, follow the instructions outlined
in “Overriding the Default BLAS Library on Intel/Windows Systems” on
page 1-40.

Before enabling multithreading, read the Intel Math Kernel Library 6.1 for
Windows Technical User Notes that explains certain limitations of this
capability.
1-41

1

1-4
1Programming Features
MATLAB 7.0 adds the following programming features and enhancements. For
a list of new functions, see “Summary of New Functions” on page 1-49

Changes You Should Note

• “Case-Sensitivity in Function and Directory Names” on page 1-43

• “Differences Between Built-Ins and M-Functions Removed” on page 1-43

• “MATLAB Stores Character Data As Unicode” on page 1-44

Other Programming Features

• “New Calling Syntax for Function Handles” on page 1-45

• “Arrays of Function Handles” on page 1-46

• “Anonymous Functions” on page 1-46

• “Nested Functions” on page 1-48

• “Summary of New Functions” on page 1-49

• “New Features in Regular Expression Support” on page 1-50

• “Functions that Use Regular Expressions” on page 1-50

• “Changes to Error Message Format” on page 1-51

• “Cell Array Support for String Functions” on page 1-54

• “Freestyle Date String Format” on page 1-54

• “Additional Class Output From mat2str” on page 1-54

• “datestr Returns Date In Localized Format” on page 1-55

• “Form and Locale for weekday” on page 1-55

• “String Properties” on page 1-55

• “Bit Functions on Unsigned Integers” on page 1-56

• “nargin and nargout Now Work on Built-Ins” on page 1-56

• “nargchk Has a New Format for Error Messages” on page 1-56

• “Using strtok on Cell Arrays of Strings” on page 1-57

• “Protecting Files from Unwanted Deletion” on page 1-57

• “inmem Returns Path Information” on page 1-57
2

Programming Features
• “Accessing Cell and Structure Arrays Without deal” on page 1-58

• “Calling Private Functions From Scripts” on page 1-58

• “New Features for Nondouble Data Types” on page 1-58

• “Unicode-Based Character Classification” on page 1-58

• “Compressed Data Support in MAT-Files” on page 1-59

• “Comprehensive Function for Reading Text FIles” on page 1-59

• “Saving Structures with the save Function” on page 1-60

• “New Data Import/Export Features” on page 1-60

• “MATLAB Performance Acceleration” on page 1-64

• ““Using MATLAB” Documentation Is Now Three Books” on page 1-65

Case-Sensitivity in Function and Directory Names
Prior to this release, filenames for MATLAB functions and Simulink® models,
(M, P, MEX, DLL, and MDL files) and also directory names were interpreted
somewhat differently by MATLAB with regards to case sensitivity, depending
upon which platform you were running on. Specifically, earlier versions of
MATLAB handled these names with case sensitivity on UNIX, but without
case sensitivity on Windows.

This release addresses the issue of case sensitivity in an effort to make
MATLAB consistent across all supported platforms. By removing these
differences, we hope to make it easier for MATLAB users to write platform
independent code.

This change is more fully discussed in “Case-Sensitivity in Function and
Directory Names” on page 3-15, under “Programming Upgrade Issues.”

Differences Between Built-Ins and M-Functions
Removed
MATLAB implements many of its core functions as built-ins. In previous
releases of MATLAB, there have been several significant differences between
the way MATLAB handles built-in and M-file functions. As of this release,
MATLAB handles both types of functions the same. This change affects
function dispatching and the output of the functions and which functions.

This change is more fully discussed in “Differences Between Built-Ins and
M-Functions Removed” on page 3-19, under “Programming Upgrade Issues.”
1-43

1

1-4
MATLAB Stores Character Data As Unicode
Prior releases of MATLAB represented character data in memory using a
system default character encoding scheme that was padded out to 16-bits. This
was the case both in memory and in MAT-files. If this data needed to be
accessible to multiple users, each user’s system had to use the same character
encoding scheme. For those users whose default encoding scheme differed, the
exchange of character-oriented information was not possible.

In Release 14, this limitation is removed by adopting the Unicode character
data encoding scheme in mxArrays and their storage in MAT-files. For more
information regarding Unicode, consult the Unicode Consortium web site at
http://www.unicode.org.

Changes to save and matOpen
MATLAB writes character data to MAT-files using Unicode character encoding
by default. You can override this setting and use the default character set for
your system instead by doing one of the following:

• From the MATLAB command line or a MATLAB function, save your data to
the MAT-file using the command save -v6

• From a C mex file, open the MAT-file you will write the data to using the
command matOpen -wL

See the individual reference pages for these functions for more information.

Caution If you have saved data to a MAT-file using MATLAB Release 14
Beta 2, please read “MAT-Files Generated By Release 14 Beta2 Must Be
Reformatted” on page 3-13.

Character Rendering on Linux
Character data rendering has been improved for Linux operating systems that
are configured with a UTF-8 default character set.
4

Programming Features
For More Information
For more information on saving character data using Unicode encoding, see
“Writing Character Data” in the External Interfaces documentation. For
information on the internal formatting of MAT-files, see the “MAT-File
Format” document in the MATLAB documentation available in PDF format

Caution MAT-files saved in MATLAB version 7.0 without using the new -v6
flag are not readable in previous versions of MATLAB. See “Making Release
14 MAT-files Readable in Earlier Versions” on page 3-13.

New Calling Syntax for Function Handles
You can now call functions by means of their related function handles using
standard calling syntax rather than having to use feval. When calling a
function using its handle, specify the function handle name followed by any
input arguments enclosed in parentheses.

For the parabola function shown here, construct a function handle h and call
the parabola function by means of the handle:

function y = parabola(a, b, c, x)
y = a*x.^2 + b*x + c;

parabHandle = @parabola;

parabHandle(1.3, .2, 30, 25)

When calling functions that take no input arguments, you must use empty
parentheses after the function handle:

parabHandle()

For purposes of backward compatibility, the use of feval to evaluate function
handles is still supported in this release. See “Function Handles and Backward
Compatibility” on page 3-20.
1-45

1

1-4
Arrays of Function Handles
Previous releases of MATLAB supported arrays of function handles. You
created such an array using the [] operator, and indexed into the array with
the () operator:

x = [@sin @cos @tan];
plot(feval(x(2), -pi:.01:pi));

In Release 14, MATLAB supports arrays of functions handles using cell arrays.
You create and index into a function handle array using the {} operator:

x = {@sin @cos @tan};
plot(x{2}(-pi:.01:pi));

For purposes of backward compatibility, standard arrays of function handles
are still supported in this release. See “Function Handles and Backward
Compatibility” on page 3-20.

Anonymous Functions
Anonymous functions give you a quick means of creating simple functions
without having to create M-files each time. You can construct an anonymous
function either at the MATLAB command line or from within another function
or script.

Refer to “Anonymous Functions” in the MATLAB Programming
documentation for more complete coverage of this topic. For more information
on anonymous functions, open the M-file anondemo.m in the MATLAB Editor
by typing

edit anondemo

Syntax
The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

where arglist is a comma-separated list of input variables, and expr is any
valid MATLAB expression. The constructor returns a function handle,
fhandle, that is mapped to this new function. Creating a function handle for
an anonymous function gives you a means of invoking the function. It is also
useful when you want to pass your anonymous function in a call to some other
function.
6

Programming Features
Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” on page -27.

You can use the function handle for an anonymous function in the same way as
any other MATLAB function handle.

A Simple Example
To create a simple function sqr to calculate the square of a number, use

sqr = @(x) x.^2;

To execute the function, type the name of the function handle, followed by any
input arguments enclosed in parentheses:

a = sqr(5)
a =
 25

Since sqr is a function handle, you can pass it to other functions. The code
shown here passes the function handle for anonymous function sqr to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =
 0.3333

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. See
“Arrays of Anonymous Functions” in the MATLAB Programming
documentation.

Examples
You can find more examples of how to use anonymous functions in MATLAB
under “Examples of Anonymous Functions.”
1-47

1

1-4
Nested Functions
You can now define one or more functions within another function in MATLAB.
These inner functions are said to be nested within the function that contains
them. You can also nest functions within other nested functions.

Refer to “Nested Functions” in the MATLAB Programming documentation for
more complete coverage of this topic. For more information on nested functions,
open the M-file nesteddemo.m in the MATLAB Editor by typing

edit nesteddemo

Writing a Nested Function
To write a nested function, simply define one function within the body of
another function in an M-file. Like any M-file function, a nested function
contains any or all of the usual function components. In addition, you must
always terminate a nested function with an end statement:

function x = A(p1, p2)
...
 function y = B(p3)
 ...
 end
...
end

Characteristics of Nested Functions
Two characteristics unique to nested functions are

• A nested function has access to the workspaces of all functions inside of
which it is nested. A variable that has a value assigned to it by the primary
function can be read or overwritten by a function nested at any level within
the primary. Similarly, a variable that is assigned in a nested function can
be read or overwritten by any of the functions containing that function.

• When you construct a function handle for a nested function, the handle not
only stores the information needed to access the nested function; it also
stores the values of all variables shared between the nested function and
those functions that contain it. This means that these variables persist in
memory between calls made by means of the function handle.
8

Programming Features
Examples
You can find examples of how to use nested functions in MATLAB under
“Examples of Nested Functions.”

Summary of New Functions
These functions are new in this release.

Function Description

addtodate Modify a particular field of a date number

genvarname Construct valid variable name from string

intmax Return largest possible integer value

intmin Return smallest possible integer value

intwarning Control state of integer warnings

isfloat Detect floating-point arrays

isinteger Detect whether an array has integer data type

isscalar Determine if item is a scalar

isstrprop Determine the content of each element of a string

isvector Determine if item is a vector

mmfileinfo Get information about multimedia file

recycle Set option to move deleted files to recycle folder

restoredefaultpath Restore default search path

strtrim Remove leading and trailing whitespace from
string

textscan Read data from text file, convert and write to cell
array

xlswrite Write matrix to a Microsoft Excel spreadsheet
1-49

1

1-5
New Features in Regular Expression Support
This version of MATLAB introduces the following new features in regular
expression support:

• Multiple Input Strings — You can use any of the MATLAB regular
expression functions with cell arrays of strings as well as with single strings.
Any or all of the input parameters (the string, expression, or replacement
string) can be a cell array of strings.

• Selective Outputs — To select what type of data you want the regexp and
regexpi to return (string indices or text, token indices or text, or token data
by name) use one or more of the six qualifiers for these functions.

• Lookaround Operators — Lookahead and lookbehind operators enable you to
match a pattern only if it is preceded, or followed, by another pattern.

• New Logical Operators — New operators for grouping, inserting comments,
and finding alternative match patterns

• New Quantifiers — Lazy quantifiers match a minimum number of
characters in a string. Possessive quantifiers do not reevaluate parts of the
string that have already been evaluated

• Element Grouping — Group elements together using either (...) to group
and capture, or (?:...) for grouping alone

• Named Capture Grouping — Capture characters in a token and assign a
name to the token

• Conditional Expressions — Process a string in different ways depending on
a stated condition

• New character representations — New symbolic representations such as \e
for escape, or \xN for a character of hexadecimal value N, are available in this
release.

• Default Tokenizing — The regexprep function now tokenizes by default.
There is no longer a 'tokenize' option

Refer to “Regular Expressions” in the MATLAB Programming documentation.

Functions that Use Regular Expressions
The who, whos, save, load, and clear functions now accept regular expressions
as input. This feature enables you to be more selective concerning which
variables they operate on.
0

Programming Features
For example, this statement saves to a MAT-file only those variables with a
name that either starts with the letters A or B, or contains ten or more
characters:

save('mydata.mat', '-regexp', '^[AB].', '.{10,}');

If the workspace contains the following four variables, two of the four meet the
requirements of the regular expression:

whos
 Name Size Bytes Class

A_stats 10x5 400 double array
X23456789 1x1 12 char array
ab 3x1 536 struct array
longerVariableName 1x4 8 char array

When you perform the save operation and then check the contents of the
MAT-file, you see that the variables with names that either start with A or
have at least ten characters were saved:

save('mydata.mat', '-regexp', '^[AB].', '.{10,}');

whos -file mydata.mat
 Name Size Bytes Class

A_stats 10x5 400 double array
longerVariableName 1x4 8 char array

Refer to the reference pages for these functions for more information and
examples.

Changes to Error Message Format
The last two lines of MATLAB error messages have changed for Release 14.
Error messages now

• Display functions and subfunctions differently than in R13.

• Display nested functions.

• Call out the error in a string that you can use as input to other functions, like
dbstop.

• Have a hot link to the source of the error.
1-51

1

1-5
Each of these changes is discussed below. Examples show the errors generated
by both the previous release (V6.5) and current release (7.0) of MATLAB for the
purpose of comparison.

Display of Functions and Subfunctions
MATLAB now calls out the source of the error using a consistent format. One
of the features of this format is that you can place the string of the message into
other MATLAB commands. See “Using the Error Message String as Input to
Other Functions” on page 1-53.

Errors Generated by the Primary Function. Errors generated by the primary function
of an M-file are displayed as shown below. In version 7.0, the path is not shown
in most cases (private functions are one exception). Filename extension is also
not shown. The failing line number is shown on third line.

In MATLAB V6.5 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> B:\MATLAB_V70\work\errmsgtest.m
On line 11 ==> strcmp('aa','bb','cc');

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest at 11
strcmp('aa','bb','cc');

Errors Generated by a Subfunction. Errors generated by a subfunction of an M-file
are displayed in the previous release and current release of MATLAB as shown
below. Comments for primary functions apply here as well. Also, the name of
the failing subfunction follows the > character instead of being put in
parentheses.
2

Programming Features
In MATLAB V6.5 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> B:\MATLAB_V70\work\errmsgtest.m (subFun1)
On line 17 ==> strcmp('aa','bb','cc');

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>subFun1 at 17
strcmp('aa','bb','cc');

Error Messages Display Nested Functions
This example shows an error that comes from a nested function (nestFun2)
called by another nested function (nestFun1). It uses the following syntax,
where the > character follows the name of the primary function and precedes
the names of any nested functions.

fun>nestfun1/nestfun2/etc at lineno.

In MATLAB V6.5 —

Nested functions are not supported prior to version 7.0.

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>nestFun1/nestFun2 at 6
strcmp('aa','bb','cc');

Using the Error Message String as Input to Other Functions
You can copy the text of theline that calls out the source of an error and use this
string as input to some of the MATLAB debugging functions. The example
shown below uses the string in a call to the dbstop function.

Copy the text that begins after

Error in ==>
1-53

1

1-5
In MATLAB V6.5 —

This feature is not supported prior to version 7.0.

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>nestFun1/nestFun2 at 6
strcmp('aa','bb','cc');

Copy and paste text of this error message into the dbstop command:

dbstop errmsgtest>nestFun1/nestFun2 at 6

Hot Link to the Source of an Error
Error messages now contain a blue-underlined hot link to the failing line of the
M-file being executed.

Cell Array Support for String Functions
You can now pass a cell array of strings to the strfind function. MATLAB
searches each string in the cell array for occurrences of the pattern string, and
returns the starting index of each such occurrence.

Freestyle Date String Format
When converting between serial date numbers, date vectors, and date strings
with the datenum, datevec, and datestr functions, you can specify a format for
the date string from the Free-Form Date Format Specifiers table shown on the
datestr reference page.

Additional Class Output From mat2str
The statement str = mat2str(A, 'class') creates a string with the name of
the class of A included. This option ensures that the result of evaluating str
will also contain the class information.
4

Programming Features
Change the 16-bit integer matrix to a string that includes 'int16'. Next,
evaluate this string and verify that you get the same matrix that you started
with:

x1 = int16([-300 407 213 418 32 -125]);

A = mat2str(x1, 'class')
A =
 int16([-300 407 213 418 32 -125])
x2 = eval(A);

isa(x2, 'int16') && all(x2 == x1)
ans =
 1

datestr Returns Date In Localized Format
The statement str = datestr(..., 'local') returns the date string in a
localized format. See the datestr reference page for more information.

Form and Locale for weekday
The weekday function now takes two new inputs that control the output
format. These arguments enable you to get a full or abbreviated day name, and
a local or US English output.

String Properties
Use the new isstrprop function to see what parts of a string or array of strings
are alphabetic, alphanumeric, numeric digits, hexadecimal digits, lowercase,
uppercase. white-space characters, punctuation characters, contain control
characters, or contain graphic characters.
1-55

1

1-5
For example, to test for alphabetic characters in a two-dimensional cell array,
use

A = isstrprop({'abc123def';'456ghi789'}, 'alpha')
A =
 [1x9 logical]
 [1x9 logical]

A{:,:}
ans =
 1 1 1 0 0 0 1 1 1
 0 0 0 1 1 1 0 0 0

Bit Functions on Unsigned Integers
MATLAB bit functions now work on unsigned integers. Instead of using flints
(integer values stored in floating point) to do you bit manipulations, consider
using unsigned integers. See “Bit Functions Now Work on Unsigned Integers”
in the MATLAB Mathematics release notes.

nargin and nargout Now Work on Built-Ins
In this release, you can now use the nargin and nargout functions to find out
how many inputs and outputs are supported by a built-in function:

nargin('sprintf')
ans =
 2
nargout('sprintf')
ans =
 2

nargchk Has a New Format for Error Messages
When the nargchk function detects an error condition, it returns information
on the error in either a string or a MATLAB structure. Use one of these two
command syntaxes to specify which format to return. If neither is specified,
nargchk returns a string:

msgstring = nargchk(minargs, maxargs, numargs, 'string')
msgstruct = nargchk(minargs, maxargs, numargs, 'struct')
6

Programming Features
The return structure has two fields: the message string, and a message
identifier. When too few inputs are supplied, these fields are

 message: 'Not enough input arguments.'
 identifier: 'MATLAB:nargchk:notEnoughInputs'

When too many inputs are supplied, the structure fields are

 message: 'Too many input arguments.'
 identifier: 'MATLAB:nargchk:tooManyInputs'

Using strtok on Cell Arrays of Strings
You can now use the strtok function on a cell array of strings. When used with
a cell array of strings, strtok returns a token output that is also a cell array of
strings, each containing a token for its corresponding input string.

See the strtok reference page to see an example of how this works.

Protecting Files from Unwanted Deletion
To protect yourself from unintentionally deleting any files that you want to
keep, use the new recycle function to turn on file recycling. When file recycling
is on, MATLAB moves all files that you delete with the delete function to either
the recycle bin (on the PC or Macintosh) or a temporary folder (on UNIX).
When file recycling is off, any files you delete are actually removed from the
system.

You can turn recycling on for all of your MATLAB sessions using the
Preferences dialog box (Select File -> Preferences -> General). Under the
heading Default behavior of the delete function, select Move files to the
Recycle Bin.

inmem Returns Path Information
The inmem function now returns not only the names of the currently loaded M-
and MEX-files, but the path and filename extension for each as well. Use the
-completenames option to obtain this additional information:

inmem('-completenames')
1-57

1

1-5
Accessing Cell and Structure Arrays Without deal
In many instances, you can access the data in cell arrays and structure fields
without using the deal function. Here is an example that reads each of the cells
of a cell array into a separate output:

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};

Use either of the following to access the cells in C:

[a,b,c,d] = deal(C{:})
[a,b,c,d] = C{:}

Here is an example that reads each of the fields of a structure array into a
separate output:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;

Use either of the following to access the name field:

[name1,name2] = deal(A(:).name)
[name1,name2] = A(:).name

Calling Private Functions From Scripts
You can now invoke a private function from a script, provided that the script is
called from another M-file function, and that the private function being called
by the script is within the scope of this M-file function.

New Features for Nondouble Data Types
The section “New Nondouble Mathematics Features” on page 1-24 describes
new features affecting the nondouble (single and integer) data types. These
changes affect single and integer arithmetic operations, and also conversion
of single and double data types to integers.

Unicode-Based Character Classification
Unicode-based character classification APIs are now provided in MATLAB.
The new character classification functions work with any locale or language
and resolve all locale-specific issues that existed in prior releases.
8

Programming Features
Compressed Data Support in MAT-Files
The save function compresses your workspace variables as they are saved to a
MAT-file. When writing a MAT-file that you will need to load using an earlier
version of MATLAB, be sure to use the save -v6 command. When you use the
-v6 switch, MATLAB saves the data without compression and without Unicode
character encoding. This makes the resulting file compatible with MATLAB
Version 6 and earlier.

You can also compress data when using MAT-file interface library functions
(matPut*) to write to a MAT-file by opening the file with the command matOpen
wz. See the section “Compressing Data” in the save reference page for more
information on this feature.

Comprehensive Function for Reading Text FIles
The new textscan function reads data from an open text file into a cell array.
MATLAB parses the data into fields and converts it according to conversion
specifiers passed to textscan in the argument list.

The textscan function is similar to textread but differs from textread in the
following ways:

• The textscan function offers better performance than textread, making it a
better choice when reading large files.

• With textscan, you can start reading at any point in the file. Once the file is
open, (textscan requires that you open the file first), you can seek to any
position in the file and begin the textscan at that point. The textread
function requires that you start reading from the beginning of the file.

• Subsequent textscan operations start reading the file at the point where the
last textscan left off. The textread function always begins at the start of the
file, regardless of any prior textread.

• textscan returns a single cell array regardless of how many fields you read.
With textscan, you don’t need to match the number of output arguments to
the number of fields being read as you would with textread.

• textscan offers more choices in how the data being read is converted.

• textscan offers more user-configurable options.
1-59

1

1-6
Saving Structures with the save Function
Two new syntaxes for the save function enable you to save individual fields of
a structure to a file. See the function reference for save for more information.

To save all fields of the scalar structure s as individual variables within the file,
myfile.mat, use

save('myfile', '-struct', 's')

To save as individual variables only those structure fields specified (s.f1, s.f2,
...), use

save('myfile', '-struct', 's', 'f1', 'f2', ...)

New Data Import/Export Features
MATLAB includes the following new features for importing and exporting
data.

• “New Features in the xlsread Function” on page 1-60

• “New Features in dlmwrite Function” on page 1-61

• “Importing Complex Arrays” on page 1-62

• “Using imread to Import Subsets of TIFF Images” on page 1-62

• “Getting Information about Multimedia Files” on page 1-64

• “All-Platform Audio Recording and Playback” on page 1-64

• “FTP File Operations” on page 1-64

• “Web Services (SOAP)” on page 1-64

New Features in the xlsread Function
The table below shows new input and output arguments to the xlsread
function. See the function reference for xlsread for more information. With the
0

Programming Features
exception of the basic input argument, these arguments are supported only on
computer systems capable of starting Excel as a COM server from MATLAB.

Note If you use the xlsread function for reading date values, you should also
read the release notes section, “Reading Date Values with xlsread” on
page 3-23.

New Features in dlmwrite Function
The dlmwrite function now has several new input arguments plus an optional
attribute-value format in which to enter these arguments. You can now enter
input arguments to dlmwrite in an attribute-value format. This format enables
you to specify just those arguments that you need and omit any others. This
new syntax for dlmwrite is

dlmwrite('filename', M, attribute1, value1, ...
 attributeN, valueN)

The former syntax for dlmwrite is still supported for arguments that were
available in earlier versions of MATLAB.

New Input
Arguments

Description

-1 Opens the Excel file in an Excel window, enabling you to
interactively select the worksheet to be read and the
range of data to import from the worksheet.

range Reads data from the rectangular region of a worksheet
specified by range.

basic Imports data from the spreadsheet in basic import mode.

New Output
Argument

Description

rawdata Returns unprocessed cell content in a cell array. This
includes both numeric and text data.
1-61

1

1-6
The table below shows new input arguments to the dlmwrite function. You
must specify these new arguments using the attribute-value format. See the
function reference for dlmwrite for more information.

For example, to export matrix M to file myfile.txt, delimited by the tab
character, and using a precision of six significant digits, type

dlmwrite('myfile.txt', M, 'delimiter', '\t', 'precision', 6)

Importing Complex Arrays
The csvread, dlmread, and textscan functions import any complex number as
a whole into a complex numeric field, converting the real and imaginary parts
to the specified numeric type. Valid forms for a complex number are

Using imread to Import Subsets of TIFF Images
Using the imread function with the 'PixelRegion' parameter, you can now
read in portions of an image stored in TIFF format. As the value of this
parameter, you specify a cell array containing two vectors: ROWS and COLS. Each

Attribute Value

append Either overwrite or append to the file

delimiter Delimiter string to be used in separating matrix elements

newline Character(s) to use in terminating each line

roffset Offset, in rows, from the top of the destination file to where
matrix data is to be written

coffset Offset, in columns, from the left side of the destination file to
where matrix data is to be written

precision Numeric precision to use in writing data to the file

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j
2

Programming Features
vector can either be a two-element vector specifying the extent of the region,
[START STOP], or a three-element vector that enables downsampling, [START
INCREMENT STOP].

When used with tiled images, 'PixelRegion' subsetting can improve memory
usage and performance because it only reads in the tiles that encompass the
region. For example, in the following figure, if you specify the region defined by
the box, imread would only read in tiles 1, 2, 4, and 5.

Tiled image Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Region

Tile 10 Tile 11 Tile 12

Tile 1
1-63

1

1-6
Getting Information about Multimedia Files
MATLAB now includes a function, named mmfileinfo, that returns
information about the contents of a multimedia file. The file can contain audio
data, video data, or both.

This function is only available on Windows platforms.

All-Platform Audio Recording and Playback
The MATLAB audiorecorder and audioplayer functions can now be used on
Windows and UNIX platforms. These functions were previously only available
on Windows systems.

Note The audiorecorder and audioplayer objects are now implemented as
MATLAB objects on all platforms. The methods supported by these objects are
overloaded functions. You must use standard MATLAB function calling syntax
to call methods of these objects; you cannot use dot notation.

FTP File Operations
From within MATLAB, you can connect to an FTP server to perform remote file
operations. For more information, see the ftp reference page.

Web Services (SOAP)
MATLAB can now consume Simple Object Access Protocol-based (SOAP) Web
services with the createClassFromWSDL function. For more information, see
“Using Web Services in MATLAB” in the online documentation.

MATLAB Performance Acceleration
Release 13 introduced a new performance acceleration feature built into
MATLAB. Enhancing performance in MATLAB is an ongoing development
project that continues to show significant improvements in the performance of
MATLAB programs.

The Performance Acceleration documentation written for Release 13 included
suggestions on specific techniques to make the most of this feature. In this
release, many of those techniques are no longer necessary. This documentation
4

Programming Features
has been replaced with more general suggestions on how to improve the
performance of your programs.

“Using MATLAB” Documentation Is Now Three
Books
Due to the increasing size of the printed “Using MATLAB” manual, we have
divided it up into three separate printed books in version 7.0 to make it more
manageable. The titles for these books (and their corresponding headings in
the MATLAB Help Browser) are

• Desktop Tools and Development Environment

• Mathematics

• Programming

The online structure of this documentation is very similar to what it has been
in previous releases, although some topics are now covered more thoroughly.
We hope that you find this new format easier to use.
1-65

1

1-6
1Graphics and 3-D Visualization Features
If you are using the Help browser, view the Graphics new features video demo
to see highlights of the new features.

The following sections introduce the new features and enhancements added in
MATLAB 7.0.

• “Plotting Tools” on page 1-66

• “Code Generation” on page 1-67

• “Data Exploration Tools” on page 1-68

• “Annotation Features” on page 1-68

• “Plot Objects” on page 1-69

• “Group Objects” on page 1-70

• “Linking Graphics Object Properties” on page 1-70

• “New Behavior for Hold Command” on page 1-70

• “Enhancements to findobj” on page 1-71

• “New Axes Properties” on page 1-71

• “New Figure Properties” on page 1-71

• “New Rootobject Property” on page 1-72

Plotting Tools
If you are using the Help browser, watch the new Plotting Tools video demo for
an overview of the major functionality.

The following list links to new or redesigned plotting tool features.

• Figure Toolbars — figure toolbars that provide data exploration, plot editing,
and annotation tools

• Interactive Plotting Tools — overview of plotting tools

- Figure Palette

- Plot Browser

- Property Editor
6

Graphics and 3-D Visualization Features
Related functions:

• plottools
• figurepalette
• plotbrowser
• propertyeditor

Plotting Tools Not Working on Macintosh
The plotting tools not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Using -nojvm Option Prevents Plotting Tools Use
If you use the -nojvm option when starting MATLAB, the plotting tools are not
available.

MATLAB 6 Version Property Editor
The MATLAB 6 Property Editor is being replaced by a new Property Editor,
which is available in this release. However, you can still access the MATLAB 6
Property Editor by issuing the following command.

propedit(object_handle,'v6')

Without the v6 argument, propedit displays the new Property Editor. See the
propedit function for more information. Note that the Property Editor might
not work with all objects.

Code Generation
You can save a graph as an M-file that contains the code to regenerate the
graph. See Generating an M-File to Recreate a Graph for more information.
1-67

1

1-6
Data Exploration Tools
The following list links to the documentation for the data exploration tools.

• Data Cursor — displaying data values interactively

• Zooming — 2-D and 3-D zoom tools

• Panning — repositioning you view of the graph

• Rotate 3D — interactive rotation of 3-D views

• Camera Toolbar — mouse-controlled 3-D view manipulation.

Annotation Features
The following list links to the documentation for annotation features and
properties of the annotation objects.

• Overview of annotation features

• Rectangles and ellipses

- Rectangle properties

- Ellipse properties

• Textbox annotations

- Textbox properties

• Lines and arrows

- Line properties

- Arrow properties

- Textarrow properties

- Doublearrow properties

• Adding a Colorbar to a graph — new positioning options and colormap
modification.

colorbar — new command options

• Adding a legend to a graph — new positioning and appearance options

legend — new command options

• Pinning — attaching annotation objects to a point in the figure

• Aligning and Distributing graphics objects
8

Graphics and 3-D Visualization Features
See the annotation function for information on programmatic access to
annotation objects.

See Annotation Objects for an overview of this type of graphics object.

Plot Objects
Plot Objects are composite graphics objects that simplify the modification of
graphs that employ them. The following list links to reference pages for
modified graphing functions and to property descriptions of the new plot
objects.

See Plot Objects for an overview of this type of graphics object.

Functions That Use Plot Objects

• area

• bar

• contour

• errorbar

• plot, plot3, loglog, semilogx, semilogy

• quiver, quiver3

• scatter, scatter3

• stairs

• stem, stem3

• surf, and mesh group

Note that all of the above functions have a 'v6' optional argument that causes
each function to return the core graphics objects that were created in previous
releases. See the reference pages for more information.

Plot Objects

• areaseries

• barseries

• contourgroup

• errorbarseries

• lineseries
1-69

1

1-7
• quivergroup

• scattergroup

• stairseries

• stemseries

• surfaceplot

Refreshing Data Source Properties
The refreshdata function enables you to take advantage of the XDataSource,
YDataSource, and ZDataSource plot objects properties to update graph data
when workspace variables change values.

See Specifying a Data Source for more information.

Group Objects
Group objects enable you treat a number of objects as one, with respect to
certain properties.

See Group Objects for an overview of this type of graphics object.

Group Object Functions

• hggroup
• hgtransform
• makehgtform

Linking Graphics Object Properties
You can link the corresponding properties of graphics objects so that changing
any one object’s properties makes the same change to all the linked objects.

See linkprop and linkaxes for more information.

New Behavior for Hold Command
The hold command has a new option all. This option holds the plot and the
current line color and line style so that subsequent graphing commands do not
reset the ColorOrder or LineStyleOrder property values to the beginning to
the list.
0

Graphics and 3-D Visualization Features
Enhancements to findobj
The findobj function now supports logical operators and regular expressions.
See the findobj reference page for more information.

New Axes Properties
You can control the behavior of an axes within a resized figure using the
following new axes properties.

• OuterPosition — The boundary of the axes including the axis labels, title,
and a margin. For figures with only one axes, this is the interior of the figure.

• ActivePositionProperty — Specifies whether to use the OuterPosition or
the Position property as the size to preserve when resizing the figure
containing the axes.

• TightInset — The margins added to the width and height of the Position
property to include text labels, title, and axis labels.

See Automatic Axes Resize for more information.

New Figure Properties
There are three new figure properties described below.

Figure KeyPressFcn Property
The figure KeyPressFcn property now supports an event structure that returns
information about the key press event. See the KeyPressFcn description for
more information.

DockControls and WindowStyle Properties
Figures now have a DockControls property that determines if the Desktop
menu appears on the figure. Setting dockable to on causes the menu to be
displayed, the default setting of off prevents the menu from being displayed.
You can always dock and undock the figure by setting the figure WindowStyle
property.

Note that, depending on your preference settings, the figure might first be
grouped into a Document window, which can then be docked in the Desktop.

See Docking Figures in the Desktop for more information.
1-71

1

1-7
New Rootobject Property
The MonitorPosition property enables you to get the postion (width, height,
and location) of multiple monitors connected to your computer.

New Dialog for Exporting Figures
You can export MATLAB figures to a variety of standard file formats using the
Export Setup dialog. To display the dialog, select Export Setup from the figure
File menu.

Export Setup provides easy access to the graphics properties that affect
exported figures. For example, it enables you to control the size of the figure,
the font size and type, whether to use line styles or solid lines, and so on.

You can save your own export setting as an export style, or you can use
predefined options optimized for PowerPoint and MSWord.

The following picture shows the major components of the Export Setup dialog.
2

Graphics and 3-D Visualization Features
Select the category of properties
you want to set.

Save your own export setting or
use predefined styles.

Apply the setting to the figure.Select an export format.
1-73

1

1-7
1External Interfaces/API Features
MATLAB 7.0 adds the following external interfaces/API features and
enhancements:

Importing and Exporting

• “Saving Character Data with Unicode Encoding” on page 1-75

• “Saving Data in Compressed Format” on page 1-75

• “Large File I/O for MEX-Files” on page 1-75

General Features
• “New mx Functions” on page 1-75

• “Automatic Registration of Automation Server on Installation” on page 1-76

• “Support for Multiple COM Type Libraries” on page 1-76

• “COM Interface Supports Custom Interfaces” on page 1-76

• “COM Data Type Support for Scripting Languages” on page 1-77

• “Additional ProgIDs for Latest MATLAB Version” on page 1-78

• “Connecting to an Existing MATLAB Server” on page 1-78

• “Graphical Interface to Listing Available ActiveX Controls” on page 1-79

• “Graphical Interface to Creating ActiveX Controls” on page 1-79

• “New Functions for the MATLAB COM Interface” on page 1-81

• “COM Interface Supports Dot Syntax in Commands” on page 1-81

• “Enumeration in COM Method Arguments” on page 1-82

• “Event Handling for COM Servers” on page 1-82

• “Callbacks to COM Event Handlers Written as Subfunctions” on page 1-83

• “Event Handlers Can Be Function Handles” on page 1-83

MATLAB Interface to Java
• “Java Interface Adds Dynamic Java Class Path” on page 1-83

• “Locating Java Native Method DLLs with File librarypath.txt” on page 1-84
4

External Interfaces/API Features
Also see the section, “External Interface/API Upgrade Issues” on page 3-28 for
information that may affect you when upgrading to this new release of
MATLAB.

Saving Character Data with Unicode Encoding
The save function now saves character data to a MAT-file using Unicode
character encoding by default. You can use your system’s default character
encoding scheme instead by specifying the -v6 option with save. See “MATLAB
Stores Character Data As Unicode” on page 1-44 for a full description of this
change.

Caution MAT-files saved in MATLAB version 7.0 without using the new -v6
flag will not be readable in previous versions of MATLAB. See “Making
Release 14 MAT-files Readable in Earlier Versions” on page 3-13.

Saving Data in Compressed Format
The save function now saves data to a MAT-file in a compressed format by
default. See “Compressed Data Support in MAT-Files” on page 1-59 for more
information.

Large File I/O for MEX-Files
MATLAB supports the use of 64-bit file I/O operations in your MEX-file
programs. This enables you to read and write data to files that are up to and
greater than 2 GB (2^31-1 bytes). Note that some operating systems or
compilers may not support files larger than 2 GB.

See “Large File I/O” in the External Interfaces documentation for more
information.

New mx Functions
New functions mxIsInt64 and mxIsUint64 return true if an mxArray represents
its data as signed or unsigned 64-bit integers respectively.
1-75

1

1-7
Automatic Registration of Automation Server on
Installation
When installing previous versions of MATLAB, system administrators also
had to run MATLAB at least once on each machine to register the Automation
server. In MATLAB 7.0, the MATLAB installation software does the
Automation server installation for you.

Support for Multiple COM Type Libraries
MATLAB now fully supports importing additional type libraries from within
an IDL file. Any COM object that depends on an imported type library is now
handled correctly.

COM Interface Supports Custom Interfaces
MATLAB now supports custom interfaces to a server component in
configurations where MATLAB is the client controlling an ActiveX control, or
an in-process or out-of-process server. For those COM components that
implement one or more custom interfaces, you can list the interfaces in
MATLAB using the new interfaces function:

h = actxserver('ComponentA.CustomObject')
h =
 COM.componenta.customobject

customlist = interfaces(h)
customlist =
 ICustomObject1
 ICustomObject2

Once you select the custom interface that you want, use the invoke function to
get a handle to it:

c1 = invoke(h, 'ICustomObject1')
c1 =
 Interface.componenta_Type_Library.ICustomObject1_Interface
6

External Interfaces/API Features
You can now use this handle with most of the COM client functions to access
the properties and methods of the object through this custom interface. For
example, to list the methods available through the ICustomObject1 interface,
use

invoke(c1)
 Add = double Add(handle, double, double)
 CustomMethod1 = HRESULT CustomMethod1(handle, int32)
 CustomMethod2 = HRESULT CustomMethod2(handle, int32)
 TripleAdd = [double, double] TripleAdd(handle, double, double)
 method3 = [string, int32, string, string] method3(
 handle, int16, int32, double, string)
 outin = [double, double, double, double] outin(
 handle, double, double)
 strings = string strings(handle, string)

You can read more about this feature in the section, “Getting Interfaces to the
Object” in the External Interfaces documentation.

COM Data Type Support for Scripting Languages
In previous versions of MATLAB, a COM client program written in VBScript
could not retrieve numeric data from or write data to the workspace of a
MATLAB client. This was because VBScript does not support the SAFEARRAY
data type used by MATLAB to pass numeric data to and from the server
workspace using the GetFullMatrix and PutFullMatrix functions.

Release 14 adds two new functions, GetWorkspaceData and PutWorkspaceData,
that pass data using the variant data type, a type that is supported by
VBScript. You can use these new functions to pass either numeric or string
data to any workspace in the COM server running MATLAB.

Refer to “Exchanging Data with the Server” in the External Interfaces
documentation.
1-77

1

1-7
Additional ProgIDs for Latest MATLAB Version
There are three additional COM programmatic identifiers (ProgIDs) in
MATLAB 7.0:

MATLAB.Autoserver
MATLAB.Autoserver.Single
MATLAB.Autoserver.7

Using any of these identifiers with the actxserver function guarantees that
the MATLAB server you create always runs the latest version of MATLAB
(version 7.0).

Note These new ProgIDs do not replace the MATLAB.Application identifier
used in previous versions of MATLAB. You can continue using this ProgID,
but there is no guarantee that actxserver will create a server running
MATLAB 7.0.

Connecting to an Existing MATLAB Server
Instead of having to create new instances of a MATLAB server, clients can
connect to an existing MATLAB automation server using the GetObject
command. This sample Visual Basic program connects to a running MATLAB
automation server, returning a handle h to that server. It then executes a
simple plot command in the server:

Dim h As Object

' Call GetObject (omit first argument).
Set h = GetObject(, "matlab.application")

' Handle h should be valid now. Test it by calling Execute
h.Execute ("plot([0 18], [7 23])")
8

External Interfaces/API Features
Graphical Interface to Listing Available ActiveX
Controls
The actxcontrollist function enables you to see what COM controls are
currently installed on your system. Type

list = actxcontrollist;

and MATLAB returns a list of each control, including its name, programmatic
identifier (or ProgID), and filename, in the output cell array.

Refer to “Finding Out What Controls Are Installed” in the External Interfaces
documentation.

Graphical Interface to Creating ActiveX Controls
The simplest way to create a control object is to use the actxcontrolselect
function. This function displays a graphical interface that lists all controls
installed on the system and creates the one that you select from the list.
1-79

1

1-8
The actxcontrolselect interface has a selection panel at the left of the
window and a preview panel at the right. Click on one of the control names in
the selection panel to see a preview of the control displayed. (If MATLAB
cannot create the control, an error message is displayed in the preview panel.)
Select an item from the list and click the Create button.

Refer to “Creating Control Objects Using a Graphical Interface” in the External
Interfaces documentation.
0

External Interfaces/API Features
New Functions for the MATLAB COM Interface
There are five new COM client functions.

There are three new COM server functions. When invoked by a MATLAB or
Visual Basic client, these functions execute in the server associated with the
specified handle parameter.

See the function reference pages in the “External Interfaces Reference”
documentation for more information.

COM Interface Supports Dot Syntax in Commands
You can now use a simpler form of syntax when invoking either MATLAB COM
functions or methods belonging to COM objects. In this dot syntax (as it is
referred to in the MATLAB documentation), you specify the object name, a dot
(.), and then the name of the function or method you are calling. Enclose any
input arguments in parentheses after the function name. Specify output
arguments to the left of the equals sign:

outputvalue = object.function(arg1, arg2, ...)

Function Description

actxcontrollist List all currently installed ActiveX controls

actxcontrolselect Display graphical interface for creating an
ActiveX control

interfaces List custom interfaces to a COM server

iscom Determine if input is a COM or ActiveX object

isinterface Determine if input is a COM interface

Function Description

Feval Evaluate MATLAB function call in the server

GetWorkspaceData Get data from server workspace

PutWorkspaceData Store data in server workspace
1-81

1

1-8
For example, Release 13 syntax for invoking the addproperty function on a
COM object with handle h was

invoke(h, 'addproperty', 'Position');

You can now perform the same operation using

h.addproperty('Position');

The get and set operations are even simpler:

 ** R13 SYNTAX ** ** R14 SYNTAX **
x = get(h, 'Radius'); x = h.Radius;
set(h, 'Radius', 50); h.Radius = 50;

Refer to “Invoking Commands on a COM Object” in the External Interfaces
documentation.

Enumeration in COM Method Arguments
In addition to supporting enumeration for the properties of a COM object,
MATLAB now supports enumeration for parameters passed to methods of a
COM object. The only restriction is that the type library in use must report the
parameter as ENUM, and only as ENUM.

Refer to “Specifying Enumerated Parameters” in the External Interfaces
documentation.

Event Handling for COM Servers
In addition to handling events from ActiveX controls, MATLAB now handles
events fired by Automation servers as well. Use the same event handling
functions that you have been using for events from controls.

Function Description

eventlisteners Return a list of events attached to listeners

events List all events, both registered and unregistered,
a control or server can generate

isevent Determine if an item is an event of a COM object
2

External Interfaces/API Features
Refer to “How to Prepare for and Handle Events from a COM Server” and
“Example — Responding to Events from an Automation Server” in the
External Interfaces documentation.

Callbacks to COM Event Handlers Written as
Subfunctions
Instead of having to maintain a separate M-file for every event handler routine
you write, you can consolidate some or all of these routines into a single M-file
using M-file subfunctions.

Refer to “Writing Event Handlers Using M-File Subfunctions” in the External
Interfaces documentation.

Event Handlers Can Be Function Handles
In this release, you can now implement ActiveX event handlers as function
handles.

Java Interface Adds Dynamic Java Class Path
MATLAB loads Java class definitions from files that are on the Java class path.
The Java class path now consists of two segments: the static path, and a new
segment called the dynamic path.

The static path is loaded from the file classpath.txt at the start of each
MATLAB session and cannot be changed without restarting MATLAB. This
was the only path available in previous versions of MATLAB. Thus, there was
no way to change the Java path without restarting MATLAB.

The dynamic Java class path can be loaded at any time during a MATLAB
session using the javaclasspath function. You can define the dynamic path

registerevent Register an event handler with a control or server
event

unregisterallevents Unregister all events for a control or server

unregisterevent Unregister an event handler with a control or
server event

Function Description (Continued)
1-83

1

1-8
(using javaclasspath), modify the path (using javaaddpath and javarmpath),
and refresh the Java class definitions for all classes on the dynamic path (using
clear java) without restarting MATLAB. See the function reference pages for
more information on how to use these functions.

The javaclasspath function, when used with no arguments, displays both the
static and dynamic segments of the Java class path:

javaclasspath

 STATIC JAVA PATH

 D:\Sys0\Java\util.jar
 D:\Sys0\Java\widgets.jar
 D:\Sys0\Java\beans.jar
 .
 .

 DYNAMIC JAVA PATH

 User4:\Work\Java\ClassFiles
 User4:\Work\Java\mywidgets.jar
 .
 .

You can read more about this feature in the sections, “The Java Class Path”
and “Making Java Classes Available to MATLAB” in the External Interfaces
documentation.

Locating Java Native Method DLLs with File
librarypath.txt
Previous versions of MATLAB required that you set a system environment
variable to enable Java to locate the shared libraries supporting any native
methods you need to use. This environment variable was PATH on Windows
systems, and LD_LIBRARY_PATH on UNIX systems. This is no longer necessary.

Now you can enter the names of those directories that contain native method
libraries in a new file called librarypath.txt using one line per directory. The
librarypath.txt file resides adjacent to the similar file classpath.txt in the
$matlab/toolbox/local directory.
4

Creating Graphical User Interfaces (GUIDE) Features
1Creating Graphical User Interfaces (GUIDE) Features
If you are using the Help browser, view the Creating Graphical User Interfaces
new features video demo to see highlights of the major new features.

MATLAB 7.0 adds the following new features and enhancements for creating
graphical user interfaces.

• “New Container Components” on page 1-85

• “ActiveX Controls” on page 1-86

• “New Toolbar Component” on page 1-86

• “Menu Editor Enhancements” on page 1-87

• “Layout Resize Behavior” on page 1-87

• “Key Press Detection” on page 1-88

• “Edit Text Box Scroll Bar” on page 1-88

• “Setting Uicontrol Focus” on page 1-88

• “Multiple Selection in uigetfile” on page 1-88

• “Program Suspension Time-Out” on page 1-89

• “Standard Dialog Box Push Buttons” on page 1-89

New Container Components
MATLAB 7.0 introduces two new container components,

• Panel — Groups components

• Button group – Groups components and manages exclusive selection
behavior for radio buttons and toggle buttons.

These components are available in the GUIDE Layout Editor and via the
functions uipanel and uibuttongroup.

A container component can be the child of a figure or another container. In
general, containers can have as children the same components as figures,
including other containers. However, they cannot have menu bars, toolbars, or
ActiveX controls as children. The Position property of the child of a panel or
button group is interpreted relative to the panel or button group. If you move
the panel or button group, the components it contains automatically move with
it and maintain their positions.
1-85

1

1-8
Panel properties and button group properties enable you to control the color,
size, border, and position of the panel or button group, assign a title, and
specify a context menu. In general, panels and button groups have many of the
same properties as uicontrol objects.

Working with Container Components in GUIDE
For information about working with panels and button groups in GUIDE, see
the following topics in the Creating Graphical User Interfaces collection of the
MATLAB documentation.

• Adding Components to the Layout Area

• Working with Components in the Layout Area

• Front-to-Back Positioning

• Setting Panel and Button Group Properties

• Callback Properties

• Viewing the Object Hierarchy

• Setting the Tab Order

ActiveX Controls
GUIDE now enables you to insert an ActiveX control into your GUI if you are
running MATLAB on Microsoft Windows. When you drag an ActiveX
component from the component palette into the layout area, GUIDE displays a
dialog in which you can select any registered ActiveX control on your system.
When you select an ActiveX control and click Create, the control appears as a
small box in the Layout Editor. You can then program the control to do what
you want it to.

See MATLAB COM Client Support in the online MATLAB documentation and
ActiveX Controls in the GUIDE documentation to learn more about ActiveX
controls.

New Toolbar Component
A new function, uitoolbar, enables you to add a toolbar to a figure. You can
add your own pushtools and toggletools to the toolbar with the uipushtool and
uitoggletool functions.
6

Creating Graphical User Interfaces (GUIDE) Features
Uipushtool properties enable you to provide a callback that responds to a
mouse click. Uitoggletool properties enable you to provide callbacks that
respond to the tool being set on, off, or toggled to either position. Properties for
both uipushtools and uitoggletools provide for tooltip strings, separators, and
truecolor images to display on the tools. In general, uitoolbar, uipushtool,
and uitoggletool objects have many of the same properties as uicontrol
objects.

Menu Editor Enhancements
The GUIDE Menu Editor now enables you to:

• Choose a keyboard accelerator for a menu item from a pop-up menu.

• Set an item’s Enabled property on or off when the menu is first opened. If
the property value is off, the item appears dimmed and the user cannot
select it.

• Open the Property Inspector where you can change all uimenu properties.

• Display the callback subfunction in an editor. If the callback does not yet
exist, GUIDE creates it before displaying it.

The Menu Editor is now better synchronized with other GUIDE tools:

• Property changes made in the Menu Editor or in the Property Inspector are
immediately reflected in the other.

• uimenu objects in the Menu Editor now also appear in the Object Browser. If
you select a uimenu object in either, it is automatically selected in the other.

• If a component is selected in the Layout Editor and you select a menu item
in the Menu Editor, the component is deselected in the Layout Editor.

See Menu Editor in the MATLAB documentation for more information.

Layout Resize Behavior
In the GUIDE Layout Editor, components you have placed in the layout area
now maintain their visual position relative to the upper left corner of their
parent container (figure, panel, or button group) when you resize the container.
However, the values of the Position property are determined relative to the
lower left corner, and these values will change accordingly when you increase
or decrease the height of the container.
1-87

1

1-8
Key Press Detection
A new uicontrol callback property, KeyPressFcn, specifies a key press callback
function with which you can detect a key press when the callback’s uicontrol
object has focus. If no uicontrol has focus, the figure’s key press callback
function, if any, is invoked. This property is available in the uicontrol
function and in GUIDE.

If you specify KeyPressFcn as an M-file, the callback routine can query the
figure's CurrentCharacter property to determine what particular key was
pressed and thereby limit the callback execution to specific keys. If you specify
KeyPressFcn as a function handle, the callback routine can retrieve
information about the key that was pressed from its event data structure
argument.

As an example, you can use this property to enable a user to press Enter,
rather than the space bar, after giving focus to a uicontrol push button. Use
the push button’s key press callback function to determine if the user pressed
the Enter key. If it was the Enter key, call the push button callback.

See the Uicontrol Properties for more information.

Edit Text Box Scroll Bar
For uicontrol editable text fields, i.e. the Style property is set to 'edit', if
Max-Min>1, then multiple lines are allowed. For multi-line edit boxes, a vertical
scroll bar enables you to scroll the text. You can also use the arrow keys to
scroll.

Setting Uicontrol Focus
The uicontrol function now enables you to transfer focus programmatically to
a specified uicontrol object. The syntax uicontrol(uich) transfers focus to
the uicontrol object with handle uich.

Multiple Selection in uigetfile
The uigetfile function can now create a dialog that enables the user to select
and retrieve multiple files using the Shift and Ctrl keys. You can turn this
capability on or off using the new 'MultiSelect' parameter. The default
setting is off.
8

Creating Graphical User Interfaces (GUIDE) Features
Program Suspension Time-Out
A new uiwait argument, timeout, enables you to specify the number of seconds
after which program execution will resume, unless uiresume is called first or
the specified figure is deleted. For example,

uiwait(h,5)

causes the suspended program to resume execution, if it has not already, after
five seconds.

Standard Dialog Box Push Buttons
For standard dialog boxes with more than one uicontrol push button, you can
now give focus to another button while retaining the default button. Focus is
denoted by a border or a dotted border, respectively, in UNIX and Microsoft
Windows. The default button has a shadow.

In such a case, if the user presses the space bar, the button with focus gets the
key press and can choose to execute its own callback or the callback of the
default button. If the user presses Enter, the default push button gets the key
press and its callback executes. This code provides an example.

ButtonName=questdlg('What is your wish?', ...
 'Genie Question', ...
 'Food','Clothing','Money','Money')
1-89

1

1-9
0

2

Platform Limitations

The MATLAB functionality described in these Release Notes and in the MATLAB documentation
applies to MATLAB 7.0, with the exception of any limitations listed in this section.

This discussion of new MATLAB platform limitations is organized into the following categories:

• Graphics Platform Limitations (p. 2-2)

2

2-2

2Graphics Platform Limitations
The MATLAB 7.0 graphics features have the platform limitations described in
this section.

Cannot Dock Figures on Macintosh
You cannot dock figures in the Desktop, because MATLAB uses native figure
windows on the Macintosh platform.

Plotting Tools Not Working on Macintosh
The plotting tools are not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Not All Macintosh System Fonts Are Available
MATLAB figures do not support the same fonts as native Macintosh
applications. Use the uisetfont functions to see which fonts are available in
MATLAB.

3

Upgrading from an Earlier
Release

This section describes the upgrade issues involved in moving from MATLAB Version 6.5 to
Version 7.0. This discussion of new MATLAB upgrade issues is organized into the following
categories:

• Desktop Tools and Development Environment Upgrade Issues (p. 3-2)

• Mathematics Upgrade Issues (p. 3-5)

• Programming Upgrade Issues (p. 3-12)

• Graphics Upgrade Issues (p. 3-27)

• External Interface/API Upgrade Issues (p. 3-28)

• Creating Graphical User Interface (GUIDE) Upgrade Issues (p. 3-30)

If you are upgrading from a release earlier than Release 12.1, then you should see “Upgrading from
an Earlier Release” on page 6-22 in the MATLAB 6.5.1 Release Notes.

3

3-2
3Desktop Tools and Development Environment Upgrade
Issues

The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of desktop tools and development environment features, are discussed below.

Desktop and General Changes
• The terminal function was removed.

• The data returned by the license command is now sorted in alphabetical
order and uses only lowercase characters.

Command Window
• Parentheses matching is not supported.

• There is a no longer a preference allowing you to limit the number of tab
completions that display. MATLAB always displays all possible completions.

Help Browser
• The web function no longer opens the specified URL in the Help browser by

default, but instead opens the page in the MATLAB Web browser. Use the
-helpbrowser option to open the page in the Help browser.

• Favorites are not migrated from the previous version.

• If you start MATLAB using the -nojvm option, you cannot view the HTML
documentation files from within MATLAB. The docopt function no longer
supports that option. You can view the HTML documentation files at the
MathWorks Web site.

Desktop Tools and Development Environment Upgrade Issues
File Operations, Workspace, and Path
• MATLAB no longer considers built-in functions differently from any other

M-files on the search path. MATLAB now looks for a given name first as a
variable, then as an M-file in the current directory, and finally as an M-file
on the search path. Previously MATLAB looked for a given name as a built-in
function after looking for it as a variable.

If you have a function name that is the same as a MATLAB built-in function,
your function might run instead of the built-in function, whereas in previous
releases the built-in function would have run. For the built-in function to
run, remove or rename your function, or change the directory order in the
search path.

• The path2rc function has been replaced by a new function, savepath. If you
use path2rc, it will run savepath instead. The new function, savepath,
performs the same actions as path2rc did, but uses a more intuitive name.
In addition, savepath is case-sensitive on PC platforms, whereas path2rc
was not. Use savepath instead of path2rc, and replace existing instances of
path2rc with savepath.
3-3

3

3-4
Editing and Debugging
• Because of the new block comment symbols, if you have any files with lines

that consist only of %{ and %}, they might be misinterpreted as block
comment start and end symbols, and might cause errors in your file.

• Because of the new symbols for cell publishing, if you have any files with
lines that consist only of %%, those lines might be misinterpreted as the start
of a cell. Your files will still run without problems, but if you publish the
M-files, you might need to modify those lines.

• The dbstack function was updated to support nested functions. If you use
dbstack in M-files, you might need to update your files because of this
change. When you run dbstack and return results to a structure, there are
now three fields, whereas in previous versions, there were only two fields.
The fields are:

- file, the file in which the function appears

- name, the function name within the file

- line, the line number in the function

The file field does not contain a complete pathname, as the name field did in
previous versions. To get the complete pathname, use
dbstack('-completenames').

• The dbstatus function was updated to support conditional breakpoints. As a
result there have been changes to some of the fields in the structure returned
with s = dbstatus(...). If you use dbstatus in M-files, you might need to
update your files because of this change. For details on the new format, see
the dbstatus reference page.

Source Control
In MATLAB 6.5 (R13) and MATLAB 7.0 (R14), only source control systems that
comply with the Microsoft Common Source Control standard are supported. If
there is a compliant source control system installed on your machine, it will be
listed in the Source Control options in the MATLAB Preferences dialog.

There are several vendors who provide and interface into Revision Control
Systems (RCS), Concurrent Versions System (CVS), and other such tools using
Microsoft Source Code Control API. ComponentSoftware provides one such
interface layer.

Mathematics Upgrade Issues
3Mathematics Upgrade Issues
The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of mathematics features, are discussed in the following sections:

• “Integer Data Type Functions Now Round Instead of Truncate” on page -5

• “max and min Now Have Restrictions on Inputs of Different Data Types” on
page -6

• “Changes to Behavior of Concatenation” on page -7

• “Changes to the Behavior of Sum” on page -8

• “FFT Functions Applied to Integer Data Types are Becoming Obsolete” on
page -9

• “Matrix, Trigonometric, and Other Math Functions No Longer Accept Inputs
of Type char” on page -9

• “New Names for Demos expm1, expm2, and expm3” on page -9

• “Matrix, Trigonometric, and Other Math Functions No Longer Accept Inputs
of Type char” on page -9

• “Colon Operator on char Now Returns a char” on page -10

• “Obsolete Functions” on page -10

Integer Data Type Functions Now Round Instead of
Truncate
The following integer data functions now round noninteger inputs instead of
truncating:

• int8

• uint8

• int16

• uint16

• in32

• uint32

• int64

• uint64
3-5

3

3-6
For example,

int8(3.7)

returns

ans =

 4

in MATLAB 7.0. In previous releases, the same command returned 3. If you
have code that contains these functions, it might return different results in
Version 7.0 than in previous releases, in particular, results that differ by 1
after converting floating-point inputs to an integer data type.

You can turn the following warning on to help diagnose these differences:

warning on MATLAB:intCovertNonIntVal

See “New Warnings for Integer Arithmetic” on page -27 for more information
about this and other new warning messages.

max and min Now Have Restrictions on Inputs of
Different Data Types
In MATLAB 7.0, the functions max and min now have the following restrictions
on inputs of different data types:

• If any input has an integer data type, all other inputs must have the same
integer data type or type scalar double.

• If any input is of type single, all other inputs must have type double or
single.

Other combinations of inputs now return an error message. In previous
releases, inputs to max or min could have any combination of data types.

Mathematics Upgrade Issues
For the allowed mixed-type combinations listed above, max and min now return
results of a different data type than in previous releases.

• If one input has an integer data type, while another has type double, the
result now has the same integer data type. In previous releases, the result
had type double.

• If one input has type single, while another has type double, the result now
has type single. In previous releases, the result had type double.

You can turn on the following warning messages to diagnose any issues that
might result from this change in behavior:

• warning on MATLAB:max:mixedIntegersScalarDoubleInputs

• warning on MATLAB:max:mixedSingleDoubleInputs

• warning on MATLAB:min:mixedIntegersScalarDoubleInputs

• warning on MATLAB:min:mixedSingleDoubleInputs

Changes to Behavior of Concatenation
When you perform concatenation ([a, b], [a;b], and cat(a,b,dim)) on mixed
integer and other numeric or logical inputs, the left-most integer type among
the inputs is the type of the result. As a result, the other inputs might lose
values when they are converted to the integer data type. In Version 7.0,
MATLAB now returns a warning when you concatenate these mixed data
types.
3-7

3

3-8
For example,

[int8(100) uint8(200)]
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.
(Type "warning off MATLAB:concatenation:integerInteraction" to
suppress this warning.)

ans =

 100 127

class(ans)

ans =

int8

Concatenating an input of any nondouble numeric data type (single and
integer data type) with type char now returns a result of type char. In previous
releases, the same operation returned a result of the same type as the numeric
data type.

Changes to the Behavior of Sum
In Version 7.0, sum applied to a vector of type single performs single
accumulation and returns a result of type single. In previous releases, sum
performed this operation in double accumulation. To restore the previous
behavior, call sum with the syntax

sum(X, 'double')

or

sum(X, dim, 'double')

See “New Class Inputs for sum” on page -30 for more information on this new
syntax.

Mathematics Upgrade Issues
FFT Functions Applied to Integer Data Types are
Becoming Obsolete
In previous releases, the following fast Fourier transform (FFT) and related
functions cast integer inputs of type uint8 and uint16 to double, used the
double algorithm, and returned a double result:

• fft

• fftn

• ifft

• ifftn

• conv2

In Version 7.0, these operations return warning messages that recommend
convert the inputs to double before applying the function, for example, by
fft(double(x)).

New Warnings for Complex Inputs to atan2, log2,
and pow2
The following functions now return a warning for inputs that are not real
numbers:

• atan2(y,x)

• [f,e] = log2(x)

• pow2(f,e)

New Names for Demos expm1, expm2, and expm3
The demos expm1, expm2, and expm3 have been renamed expmdemo1, expmdemo2,
and expmdemo3, to avoid a name conflict with the new function expm1.

Matrix, Trigonometric, and Other Math Functions
No Longer Accept Inputs of Type char
Matrix functions, such as chol, lu, and svd, and trigonometric functions, such
as sin and cos, no longer accept inputs of type char. In previous releases, these
functions simply converted char inputs to double before performing operations
on them. To restore the previous behavior of these functions, create an M-file
3-9

3

3-1
that converts its input to double before applying the function. For example, to
restore the behavior of sin,

1 Create a directory called @char in a directory on the MATLAB path, for
example, your work directory.

2 Create an M-file with the following commands:

function s = sin(x)
s = sin(double(x));

3 Save the file as sin.m in the directory @char.

Colon Operator on char Now Returns a char
Applying the colon operator to inputs of type char now returns a result of type
char. For example,

'a':'g'

ans =

abcdefg

In previous releases, the same operation returned a result of type double.

Obsolete Functions
The functions listed in the left column of the following table are obsolete and
will be removed from a future version of MATLAB. Use the replacement
functions listed in the right column instead.

Obsolete Function Replacement Function

colmmd colamd

quad8 quadl

symmmd symamd
0

Mathematics Upgrade Issues
The following obsolete functions are no longer included in MATLAB:

• fmin

• fmins

• icubic
• interp4
• interp5
• interp6

• meshdom

• nnls

• saxis
3-11

3

3-1
3Programming Upgrade Issues
The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of programming features, are discussed below.

Changes You Should Note
• “Making Release 14 MAT-files Readable in Earlier Versions” on page 3-13

• “MAT-Files Generated By Release 14 Beta2 Must Be Reformatted” on
page 3-13

• “Reserved Bytes in MAT-File Header” on page 3-14

• “Case-Sensitivity in Function and Directory Names” on page 3-15

• “Differences Between Built-Ins and M-Functions Removed” on page 3-19

Other Programming Issues

• “Function Handles and Backward Compatibility” on page 3-20

• “Changes to Error Message Format” on page 3-21

• “Regular Expression Functions No Longer Support Character Matrices” on
page 3-21

• “bin2dec Ignores Space Characters” on page 3-22

• “isglobal Function To Be Discontinued” on page 3-22

• “getfield and setfield Not To Be Deprecated” on page 3-22

• “Warning on Concatenating Different Integer Classes” on page 3-22

• “Mathematic Operations on Logical Values” on page 3-23

• “Reading Date Values with xlsread” on page 3-23

• “64-Bit File Handling on MacIntosh” on page 3-24

• “Importing Dates from Excel Worksheets” on page 3-24

• “Change in Output from xlsfinfo” on page 3-24

• “Change to How evalin Evaluates Dispatch Context” on page 3-24

• “Warning on Naming Conflict” on page 3-25

• “Enabling and Disabling Warning Messages” on page 3-26
2

Programming Upgrade Issues
Making Release 14 MAT-files Readable in Earlier
Versions

Caution Release 14 MATLAB writes character and figure data to MAT-files
using Unicode encoding by default. Unicode encoded MAT-files are not
readable by earlier versions of MATLAB. Thus, if you save data to a MAT-file
using MATLAB Release 14, and you intend to load this MAT-file into an
earlier release of MATLAB, you must override the Unicode default during the
save, as explained in this section.

In Release 14, MATLAB uses Unicode character data encoding in mxArrays
and mxArray storage in MAT-files. This is now the default encoding used by
MATLAB when writing to MAT-files with the save and hgsave functions or
with the MAT-file external interface functions.

You can override the default encoding by using the -v6 switch with save and
hgsave:

save filename -v6
hgsave filename -v6

or, when saving with MAT functions, by setting the mode to "wL" on the
matOpen operation:

matOpen(filename, "wL");

MAT-Files Generated By Release 14 Beta2 Must Be
Reformatted
Any MAT-files that you created with Release 14 Beta 2 were written using an
internal format that is no longer supported by MATLAB. As a result, if you
need to import data from these files using any release besides Release 14 Beta
2, you must first regenerate the files as described in this section. You cannot
read these files using other releases of MATLAB 7.0, and attempting to read
them with MATLAB 6.5 or 6.5.1 will corrupt memory.
3-13

3

3-1
There are two ways in which you can regenerate your MAT-file:

• If you want to use the MAT-file with earlier versions of MATLAB, regnerate
the file using the local character set for your system. To do this, run
MATLAB R14 prerelease or MATLAB R14 Beta 2, load the MAT-file, and
rewrite the file using the command

save filename -v6

• If you want to use the MAT-file with R14 LCS or later, regenerate the file
using Unicode encoding. To do this, run MATLAB R14 prerelease, load the
MAT-file, and rewrite it using the following command that uses the
-unicode default.

save filename

Caution The final R14 release of MATLAB does not allow you to import a
MAT-file written with Release 14 Beta 2. You will get an error if you attempt
to do this. To use a Beta 2 MAT-file with Release 14, you must first reformat
the file with MATLAB R14 prerelease as described above.

If you no longer have access to Release 14 Beta2 or the R14 prerelease, then
you must regenerate the data and save it again.

Reserved Bytes in MAT-File Header
In previous releases of MATLAB, the last 4 bytes of the 128-byte MAT-file
header were reserved for use by the MathWorks. In Release 14, the last 12
bytes of this header are reserved. See the PDF file “MAT-File Format” for more
information.

New Features for Nondouble Data Types
The section “New Nondouble Mathematics Features” on page 1-24 describes
new features affecting the nondouble (single and integer) data types. These
changes affect single and integer arithmetic operations, and also conversion
of single and double data types to integers.
4

Programming Upgrade Issues
Case-Sensitivity in Function and Directory Names
Prior to this release, filenames for MATLAB functions and Simulink models
(M, P, MEX, DLL, and MDL files), and also directory names were interpreted
somewhat differently by MATLAB with regards to case sensitivity, depending
upon which platform you were running on. Specifically, earlier versions of
MATLAB handled these names with case sensitivity on UNIX, but without
case sensitivity on Windows.

This release addresses the issue of case sensitivity in an effort to make
MATLAB consistent across all supported platforms. By removing these
differences, we hope to make it easier for MATLAB users to write platform
independent code.

This change is described under the following topics:

• “Case Sensitivity in MATLAB 6 and Earlier” on page 3-15

• “Case Sensitivity in MATLAB 7” on page 3-16

• “Comparing Case Sensitivity in MATLAB 6 and MATLAB 7” on page 3-16

• “Turning Off Warnings Caused by Case Mismatch” on page 3-19

Case Sensitivity in MATLAB 6 and Earlier
There are several rules regarding case sensitivity that were already consistent
across all platforms in MATLAB 6, and remain in effect on all platforms in
MATLAB 7. MATLAB interprets each of the following with case sensitivity on
both Windows and UNIX:

• Function names that correspond to MATLAB built-ins

• M-file subfunction names

• The names of functions imported from another language environment, such
as Java or COM

UNIX. On all UNIX platforms, including the new implementation on
MacIntosh, all function, model, and directory names were case sensitive and
required an exact match. This rule remains true for UNIX systems in MATLAB
7.
3-15

3

3-1
Windows. On Windows platforms, MATLAB 6 obeys the following rules. These
rules are changing in MATLAB 7:

• Function and model names were not case sensitive.

• Directory names, including MATLAB class directory names (e.g., @MyClass)
and private directory names (e.g., prIVAte) were not case sensitive.

Case Sensitivity in MATLAB 7
MATLAB 7 removes the platform specific behaviors by adopting its UNIX case
sensitivity rules on Windows systems. MATLAB running on Windows now
gives preference to an exact (case sensitive) name match, but falls back to an
inexact (case insensitive) match when no exact match can be found.

New Warnings Related to Case Sensitivity. Whenever MATLAB 7 detects a potential
naming conflict related to case sensitivity, it issues a warning. If you get one of
these warnings when running a MATLAB program, you may want to modify
the related code to eliminate the warning, or you may wish to simply disable
the warning.

Comparing Case Sensitivity in MATLAB 6 and MATLAB 7
There are four main conditions under which MATLAB 7 interprets directory or
function names differently in regards to case sensitivity:

• “Two Files of the Same Name” on page 3-16

• “Two Method Files of the Same Name” on page 3-17

• “One File with an Inexact Match” on page 3-17

• “Private Directory Names” on page 3-18

Two Files of the Same Name. Consider the situation in which there are two or
more directories on the MATLAB path that contain a function or model file of
the same name. The names of these M-files differ only in letter case:

H:\released\myTestFun.m
K:\under_test\mytestfun.m

Of these two directories, H:\released is closer to the beginning of the
MATLAB path and thus has priority over the other:

path = H:\released; K:\under_test; ...
6

Programming Upgrade Issues
On Windows Platforms —

• In MATLAB 6, executing the function mytestfun invokes
H:\released\myTestFun.m.

• In MATLAB 7, executing the function mytestfun invokes
K:\under_test\mytestfun.m and also displays the following warning:

Function call mytestfun invokes K:\under_test\mytestfun.m
however, function H:\released\myTestFun.m, that differs only in
case, precedes it on the path.

On UNIX Platforms —

MATLAB 7 does the same as on Windows, except that the warning message is
disabled by default.

Two Method Files of the Same Name. In this case, there are two M-files of the same
name that implement methods of a MATLAB base class and one of its
subclasses:

@baseclass/my_method.m
@subclass/My_Method.m

On Windows Platforms —

• In MATLAB 6, the command my_method(subclass) invokes
@subclass/My_Method.

• In MATLAB 7, the same command invokes @baseclass/my_method because
it is an exact match.

On UNIX Platforms —

MATLAB 7 does the same as on Windows.

One File with an Inexact Match. Another situation that MATLAB now handles
differently involves just one function or model file that matches the function
being called:

H:\released\myTestFun.m

However, the name of this M-file does not match the called function
(mytestfun) in letter case.
3-17

3

3-1
On Windows Platforms —

• In MATLAB 6, calling the function mytestfun invokes
H:\released\myTestFun.m.

• In MATLAB 7, calling the function mytestfun invokes the same M-file but
also displays the following warning:

Function call mytestfun invokes inexact match
H:\released\myTestFun.m.

On UNIX Platforms —

• In MATLAB 6, calling the function mytestfun results in an error.

• In MATLAB 7, calling mytestfun invokes H:\released/myTestFun.m and
generates the following warning:

Function call mytestfun invokes inexact match
H:/released/myTestFun.m.

Private Directory Names. Private functions must reside in a directory named
private that is one level down from the directory of any calling function. As of
this release, the directory name private is case sensitive on Windows as it has
always been on UNIX.

On Windows Platforms —

• In MATLAB 6, calling function myprivfun in an environment where only a
subdirectory named \PriVAte contains the M-file myprivfun.m invokes
\PriVAte\myprivfun without displaying a warning.

• MATLAB 7 does the same as MATLAB 6, except that it also displays the
following warning:

Wrong case spelling of 'private' as a directory name in
\released\PriVate\myprivfun.m.
8

Programming Upgrade Issues
On UNIX Platforms —

• In MATLAB 6, calling function myprivfun in an environment where only a
subdirectory named \PriVAte contains the M-file myprivfun.m results in an
error.

• In MATLAB 7, calling myprivfun in this same environment invokes
/PrivATe/myprivfun and also displays the following warning:

Wrong case spelling of 'private' as a directory name in
/released/PriVate/myprivfun.m.

Turning Off Warnings Caused by Case Mismatch
You can disable warnings caused by case mismatch with the following
command:

warning off MATLAB:dispatcher:InexactMatch

To disable this warning for all of your MATLAB sessions, add this command to
your startup.m or matlabrc.m file.

Differences Between Built-Ins and M-Functions
Removed
MATLAB implements many of its core functions as built-ins. In previous
releases of MATLAB, there have been several significant differences between
the way MATLAB handles built-in and M-file functions. As of this release,
MATLAB handles both types of functions the same. This change affects the
following:

• “Function Dispatching” on page 3-19

• “Return Value from the functions Function” on page 3-20

• “Output from the which Function” on page 3-20

Function Dispatching
MATLAB now dispatches both built-in and M-file functions according to the
same precedence rules, (see “Function Precedence Order” in the Programming
and Data Types section of the MATLAB documentation). In previous releases,
subfunctions, private functions, and class constructor functions took
precedence over M-functions of the same name, but not over built-ins. In this
3-19

3

3-2
release, built-in functions follow the same rules given to M-functions, and thus
are lower in precedence than the three function types named above.

This change addresses a potential problem in that changes to the internal
implementation of MATLAB functions could potentially affect the operation of
your own M-code. For example, if a new version of MATLAB were to change an
internal function from being M-based to being built-in, the function in the new
version would now be subject to different precedence rules. If one of your
M-code modules had a subfunction with the same name as this function (now
obeying the built-in rules), then this subfunction would never be called.

This release resolves this potential conflict by using the same precedence rules
for both M-functions and built-ins.

Return Value from the functions Function
The MATLAB functions function returns information about a function handle
such as the function name, type, and filename. In previous releases, functions
returned the filename for a built-in function as the string

'MATLAB built-in function'

In this release, MATLAB associates each built-in function with a placeholder
file that has a .bi extension (for example, reshape.bi for the built-in reshape
function).

Output from the which Function
The which function now displays the pathname for built-in functions, as well
as for overloaded functions when only the overloaded functions are available.

Function Handles and Backward Compatibility
In Releases 12 and 13, you could form an array of function handles using the
array constructor operator [], and refer to handles within this array using the
array indexing operator (). To call the function referred to by a function handle
value, you needed to use the feval function.

In Release 14, you invoke a function handle in the same way that you would
call a function by name. For example, if the handle to a function was stored in
variable h, you would call the function as if the handle h were a function name:

h(arg1, arg2, ...)
0

Programming Upgrade Issues
Using feval for this purpose is no longer necessary and is, in fact, slower.

This change is not backward compatible. This release, however, has a
transition strategy that will leave almost all Release 12 & Release 13 programs
working:

• Constructing a non-scalar array of functions handles is only a warning, not
an error.

• Parenthesis notation on a non-scalar function handle means subscripting,
just as in Release 13, while the same notation on scalar function handles
means function call, as described above.

Incompatibility can arise only if you construct a scalar array of function
handles and actually index it, necessarily with an index of 1.

Changes to Error Message Format
The last two lines of MATLAB error messages have changed for Release 14.
Two advantages of this change are that error messages are now displayed in a
consistent format, and part of the text of the message can be used directly with
certain MATLAB commands, like dbstop.

An example of the new format is

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest at 11
strcmp('aa','bb','cc');

See “Changes to Error Message Format” on page 1-51 under “Programming
Features” for more information on features of the new error message format.

Regular Expression Functions No Longer Support
Character Matrices
You can now pass a vector of strings in a cell array to any of the MATLAB
regular expression functions (regexp, regexpi, and regexprep). Because this
is the preferred method of passing a string vector, MATLAB no longer supports
using character matrices for this purpose.
3-21

3

3-2
bin2dec Ignores Space Characters
The bin2dec function now ignores any space (' ') characters in the input string.
Thus, the binary string '010 111' now yields the same result as the string
'010111'.

In Release 13, bin2dec interpreted space characters as zeros:

bin2dec('010 111')
ans =
 39

In this release, bin2dec ignores all space characters:

bin2dec('010 111')
ans =
 23

isglobal Function To Be Discontinued
Support for the isglobal function will be removed in a future release of
MATLAB. In Release 14, invoking isglobal generates the following warning:

Warning: isglobal is obsolete and will be discontinued.
Type "help isglobal" for more details.

getfield and setfield Not To Be Deprecated
There are no plans to remove the getfield and setfield functions from the
MATLAB language, as stated in the release notes for MATLAB Release 13.

Warning on Concatenating Different Integer Classes
If you concatenate integer arrays of different integer classes, MATLAB
displays the warning

Concatenation with dominant (left-most) integer class may
overflow other operands on conversion to return class.
2

Programming Upgrade Issues
The class of the resulting array is the same as the dominant (or left-most) value
in the concatenation:

a = int8([52 37 89; 23 16 47]);
b = int16([74 61 32; 98 73 25]);

% Combine int8 and int16 (int8 is dominant)
c = [a b];
class(c)
ans =
 int8

% Combine int16 and int8 (int16 is dominant)
c = [b a];
class(c)
ans =
 int16

Mathematic Operations on Logical Values
Most mathematic operations are not supported on logical values.

Reading Date Values with xlsread
When reading date fields from a Microsoft Excel file using earlier versions of
MATLAB, it was necessary to convert the Excel date values into MATLAB date
values. This was necessary because Excel and MATLAB calculated date values
based on a different reference date. This is explained in the section, “Handling
Excel Date Values” on the function reference for xlsread.

With MATLAB 7.0, you no longer have to do this conversion because xlsread
now imports dates as strings rather than as numerical values. If your existing
code converts Excel date values to MATLAB values, you will need to remove
this step so that you end up with the correct results.
3-23

3

3-2
64-Bit File Handling on MacIntosh
The release notes for MATLAB Release 13 should have included MacIntosh in
the list of those platforms that support 64-bit file handling. This support is
available on the following platforms:

• Windows

• Solaris

• Linux 2.4.x

• HP-UX 11.0, 9000/785

• Macintosh

Importing Dates from Excel Worksheets
Prior to this release, xlsread imported date information from an Excel file and
returned the results as a double. In Release 14, xlsread returns this
information as a cell array containing data of class char. The reason for this is
that MATLAB now imports Excel files using an Excel COM server. Excel
returns dates is as strings, and there is really no indication that what is
returned is a date.

Change in Output from xlsfinfo
xlsfinfo now returns the names or all worksheets in an Excel file instead of
just the ones with numbers in them (as in Release 13).

Change to How evalin Evaluates Dispatch Context
In Release 13 and earlier, the evalin function evaluated its input in the
specified workspace, but not the workspace's corresponding dispatching
context. Hence, running the following example used to succeed, calling the
subfunction MySubfun but using the value of x from the base workspace:

function demo
evalin('base', 'MySubfun(x)')

function MySubfun(in)
disp(in)

When you call evalin in Release 14, MATLAB tries to find a function named
MyLocalFunction that is accessible in the base workspace, i.e. at the command
4

Programming Upgrade Issues
prompt. Since MySubfun is a subfunction and therefore not in scope at the
command prompt, MATLAB errors, reporting that MySubfun is undefined.

There are two ways to change your existing code to work with this new
behavior. First, if your code only needs to get the value of the subfunction's
inputs from the base workspace (as demo.m does above), and does not care what
context MySubfun is run in, then you can change your code to use evalin only
to get the values of the inputs from the base workspace, like this:

function demo_workaround1
MySubfun(evalin('base', 'x'))

function MySubfun(in)
disp(in)

If, however, it is important that the subfunction itself be run in the context of
the base workspace, you can place a function handle to the subfunction in the
base workspace and then evaluate that:

function demo_workaround2
assignin('base', 'MySubfunHandle', @MySubfun);
evalin('base', 'MySubfunHandle(x)')

function MySubfun(in)
disp(in)

You can also substitute 'caller' for 'base' in the workaround code if your
original code uses evalin('caller', ...).

Warning on Naming Conflict
The following warning was added to identify the case when you first use a
name as a function and later use it as a variable:

Warning: File: D:\Work\MATLAB XL\theworks\my_yprime.m Line: 17
Column: 1 Variable 'getdata' has been previously used as a
function name.
(Type "warning off MATLAB:mir_warning_variable_used_as_function:
to suppress this warning.)
3-25

3

3-2
For example, this code generates such a warning:

X = i; % Calls the function i() to get sqrt(-1)
for i = 1:10 % uses i as a variable. This produces the warning.
... end

Enabling and Disabling Warning Messages
The following message, which MATLAB appended to all warning messages in
the previous release, is no longer displayed.

(Type "warning off <msgid:msgstr>" to suppress this warning.)

Use the off and on options of the warning function to control the display of all
or selected warnings. This example disables a selected warning, and then
enables all warnings:

% All warnings are enabled by default.
A = 5/0;
Warning: Divide by zero.

% Disable the most recent warning
[msgstr msgid] = lastwarn;
warning('off', msgid);

% Try it again. This time there is no warning.
A = 5/0;

% Enable all warnings
warning('on', 'all')

% Verify that the warning is reenabled.
A = 5/0;
Warning: Divide by zero.
6

Graphics Upgrade Issues

3-27

3Graphics Upgrade Issues
The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of graphics features, are discussed in this section.

Plotting Tools Not Working on Macintosh
The plotting tools not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Backward Compatible Fig-Files
To save figures in a Fig-File that is compatible with versions of MATLAB
before Version 7, follow these two steps.

• Ensure that any plotting functions used to create the contents of the figure
are called with the 'v6' argument, where applicable.

• Use the '-v6' option with the hgsave command.

See Plot Objects and Backward Compatibility for more information.

Figure Window Menu Changes
The Window menu on MATLAB figures no longer lists open Simulink models.
However, the Desktop Window menu continues to show open Simulink
models.

3

3-2
3External Interface/API Upgrade Issues
The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of external interface/API features, are discussed in the Programming and Data
Types Upgrade Issues, and below:

• “Changes to MAT-Files” on page 3-28

• “Optional Input Arguments to COM Methods” on page 3-28

• “Display of Interface Handles” on page 3-29

• “Identifying Dependencies When MEX-Files Don’t Load” on page 3-29

• “Recompile MEX-Files on GLNX86 and Macintosh” on page 3-29

• “Shared Libaries Now In /bin/$ARCH” on page 3-29

Changes to MAT-Files
Changes to MAT-files in MATLAB 7.0 are described under “Programming
Features” on page 1-42:

• “Making Release 14 MAT-files Readable in Earlier Versions” on page 3-13

• “MAT-Files Generated By Release 14 Beta2 Must Be Reformatted” on
page 3-13

• “Reserved Bytes in MAT-File Header” on page 3-14

Caution MAT-files saved in MATLAB version 7.0 without using the new
-nounicode flag will not be readable in previous versions of MATLAB. See
“Making Release 14 MAT-files Readable in Earlier Versions” on page 3-13.

Optional Input Arguments to COM Methods
When calling a method that takes optional input arguments, you can skip any
optional argument by specifying an empty array ([]) in its place. The syntax
for invoke with the second argument (arg2) not specified is as follows:

invoke(handle, 'methodname', arg1, [], arg3);

See the section, “Optional Input Arguments” in the External Interfaces
documentation for more information.
8

External Interface/API Upgrade Issues
Display of Interface Handles
MATLAB has changed the way it displays a COM interface in this release. For
example, the string used to represent an interface in MATLAB 6.5 was

[1x1 Interface.excel.application.Workbooks]

MATLAB 7.0 represents this same interface with the following string:

[1x1 Interface.Microsoft_Excel_9.0_Object_Library.Workbooks]

Identifying Dependencies When MEX-Files Don’t
Load
If MEX-files don't load on the PC the error message is not informative. The
dependency is a very useful tool distributed with MSVC. It is also freely
available from www.dependencywalker.com. In R15, we will incorporate some
kind of dependency walker into our MEX loader but for now, we will point users
to the web site.

Recompile MEX-Files on GLNX86 and Macintosh
On GLNX86 and Macintosh systems, all MEX-files that can throw errors need
to be recompiled for R14.

In Release 14, MATLAB uses C++ exception handling. MEX-files built prior to
R14 did not support C++ exceptions.

For example, write a C MEX-file that just calls mexErrMsgTxt. If you build this
with a release prior to Release 14 and run it, the program aborts MATLAB. If
you build this with Release 14 and run it, MATLAB will handle the exception
correctly.

Shared Libaries Now In /bin/$ARCH
Shared libraries previously residing in directory $MATLAB/extern/lib/$ARCH
are now in $MATLAB/bin/$ARCH.
3-29

3

3-30

3Creating Graphical User Interface (GUIDE) Upgrade Issues
The issues involved in upgrading from MATLAB 6.5 to MATLAB 7.0, in terms
of graphical user interface features, are discussed below.

New Syntax for uigetfile and uiputfile
The uigetfile and uiputfile syntax that enables you to position dialog boxes
that are used to retrieve and save files is changed. The new syntaxes are
uigetfile('FilterSpec','DialogTitle','Location',[x y]) and
uiputfile('FilterSpec','DialogTitle','Location',[x y]).

The old syntaxes, uigetfile('FilterSpec','DialogTitle',x,y) and
uiputfile('FilterSpec','DialogTitle',x,y), are obsolete and will be
removed in a later release.

Frames Not Available in GUIDE Layout Editor
The frame component no longer appears in the GUIDE Layout Editor
component palette. It has been replaced by the panel and button group
components. See “New Container Components” on page 1-85 for information
about these new components.

GUIDE continues to support frames in those GUIs that contain them, but it is
recommended that you replace them with panels or button groups.

Exporting a GUI Containing a Panel or Button Group
You can export a GUI that contains a panel or button group from GUIDE to a
single M-file that does not require a FIG-file. However, you will not be able to
run that M-file in MATLAB versions earlier than 7.0.

4

Major Bug Fixes

MATLAB 7.0 includes several bug fixes made since the last MATLAB release.
This section describes the particularly important Version 7.0 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than MATLAB 6.5.1 (Release 13
SP1), then you should also see “Major Bug Fixes” on page 6-11 in the MATLAB
6.5.1 Release Notes.

4 Major Bug Fixes

4-2

5

Known Software and
Documentation Problems

This section includes a link to a description of known software and
documentation problems in MATLAB 7.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

For a list of bugs reported in MATLAB 6.5.1 that remain open, see “Known
Software and Documentation Problems” on page 6-23 in the MATLAB 6.5.1
Release Notes.

5 Known Software and Documentation Problems

5-2

6

MATLAB 6.5.1 Release
Notes

New Features 1-2
MATLAB Interface to Generic DLLs 1-2
Relational Operators Work with int64, uint64 1-3
Reading HDF5 Files 1-3
Reading and Writing Data with JPEG Lossless Compression . 1-9
Reading and Writing L*a*b* Color Data 1-10

Major Bug Fixes 1-11
Seeking Within a File 1-11
Reshaping to More Than Two Dimensions 1-12
mkdir No Longer Fails On Windows NT 1-12
Using sqrt with Complex Input 1-12
Multiplying Matrices with Non-Double Entries 1-12
Sorting a Sparse Row Vector or Matrix 1-13
diff Produces Correct Results With Logical Inputs 1-13
Opening Modal Dialog with Third-Party GUI Open 1-13
Serial Port Object with Latest Windows Service Pack 1-13
OpenGL Problem Using Notebook 1-13
Lcc C Compiler Fixed to Handle Large C Files 1-14
Bug Fixes in MATLAB Interface to COM 1-14
Bug Fixes in Creating GUIs 1-19

Upgrading from an Earlier Release 1-22
Rebuild Macintosh MEX-files 1-22
Function and Data Type Names in Generic DLL Interface . . 1-22

Known Software and Documentation Problems 1-23
Using xlsfinfo on Systems Without Excel 1-23

6 MATLAB 6.5.1 Release Notes

6-2
New Features
This section introduces the following new features and enhancements added in
MATLAB 6.5.1 since Version 6.5 (Release 13):

• “MATLAB Interface to Generic DLLs” on page 6-2

• “Relational Operators Work with int64, uint64” on page 6-3

• “Reading HDF5 Files” on page 6-3

If you are upgrading from a release earlier than Release 13, then you should
also see “New Features” on page 7-2 in the MATLAB 6.5 Release Notes.

MATLAB Interface to Generic DLLs
A shared library is a collection of functions that are available for use by one or
more applications running on a system. On Windows systems, the library is
precompiled into a dynamic link library (.dll) file. At run-time, the library is
loaded into memory and made accessible to all applications. The MATLAB
Interface to Generic DLLs enables you to interact with functions in dynamic
link libraries directly from MATLAB.

Documentation
For help on this new feature, see “MATLAB Interface to Generic DLLs” in the
External Interfaces documentation.

The examples used in the documentation use library (.dll) and header (.h)
files located in the MATLABROOT\extern\examples\shrlib directory. To use
these example files, first add this directory to your MATLAB path with the
following command:

addpath([matlabroot '\extern\examples\shrlib'])

Or you can make this your current working directory with this command:

cd([matlabroot '\extern\examples\shrlib'])

Restrictions for This Release

• At this time, the MATLAB Interface to Generic DLLs is supported on
Windows systems only.

New Features
• Passing a void ** argument to a function in a dynamic link library is not
supported in this release.

• Passing a complex structure argument to a function in a dynamic link library
is not supported in this release. (The term complex structure argument refers
to a structure constructed from other structures.)

• Passing an array of pointers, is not supported in this release. An example of
an array of pointers is an array of strings.

• MATLAB does not support manipulation of pointers returned by functions in
a dynamic link library at this time. An example of this type of operation is
the addition or subtraction of pointers.

Function and Data Type Names in Generic DLL Interface
Minor changes have been made to the naming of some functions and data types
in the Generic DLL interface. If you are upgrading from the post-release 13
download of MATLAB, see “Function and Data Type Names in Generic DLL
Interface” on page 6-22 of these release notes.

Relational Operators Work with int64, uint64
All relational operators such as, <, >, <=, >=, ~=, and == now support int64 and
uint64 data types.

Reading HDF5 Files
This release includes support for reading files that use the Hierarchical Data
Format, Version 5 (HDF5). HDF5 is a product of the National Center for
Supercomputing Applications (NCSA). The NCSA develops software and file
formats for scientific data management.

This section includes this information:

• An overview of the structure of an HDF5 file

• Determining the contents of an HDF5 file

• Reading data from an HDF5 file

• Mapping HDF5 data types to MATLAB data types
6-3

6 MATLAB 6.5.1 Release Notes

6-4
Note MATLAB has supported reading and writing HDF files for several
releases. The HDF and HDF5 specifications are not compatible.

Overview of HDF5 File Structure
HDF 5 files can contain multiple datasets. A dataset is a multidimensional
array of data elements. Datasets can have associated metadata. HDF5 files
store the datasets and attributes in a hierarchical structure, similar to a
directory structure. The directories in the hierarchy are called groups. A group
can contain other groups, datasets, attributes, links, and data types.

To illustrate this structure, the following figure shows the contents of the
sample HDF5 file included with MATLAB, example.h5.

Figure 6-1: Hierarchical Structure of example.h5 HDF5 File

/

/g1 /g2

/g1/g1.1 /g1/g1.2

/g1/g1.1/dset1.1.1

/g2/dset2.1 /g2/dset2.2

/g1/g1.1/dset1.1.2 /g1/g1.2/g1.2.1

slink

/attr1 /attr2

= Dataset

= Group

= Attribute

= Link

/g1/g1.1/dset1.1.1/attr1 /g1/g1.1/dset1.1.1/attr2

New Features
Determining the Contents of an HDF5 File
To extract an attribute or dataset from an HDF5 file, you must know the name
of the attribute or dataset. You specify the name as an argument to the
hdf5read function, described in “Reading Data from an HDF5 File” on
page 6-6.

To find the names of all the datasets and attributes contained in an HDF5 file,
you can use the hdf5info function. For example, to find out what the sample
HDF5 file, example.h5, contains, use this syntax.

fileinfo = hdf5info('example.h5');

The fileinfo structure returned by hdf5finfo contains various information
about the HDF5 file, including the name of the file and the version of the HDF5
library that MATLAB is using.

fileinfo =
Filename: 'example.h5'

 LibVersion: '1.4.2'
 Offset: 0
 FileSize: 8172
 GroupHierarchy: [1x1 struct]

To explore the contents of the file, examine the GroupHierarchy field.

level1 = fileinfo.GroupHierarchy

level1 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

The GroupHierarchy structure describes the top-level group in the file, called
the root group. HDF5 uses the UNIX convention and names this top-level
group / (forward slash), as seen in the Name field. The other fields in the
structure describe the contents of the group. In the example, the root group
contains two groups and two attributes. All the other fields, such as the
6-5

6 MATLAB 6.5.1 Release Notes

6-6
Datasets field, are empty. To traverse further down the file hierarchy, look at
one of the structures in the Groups field.

level2 = level1.Groups(2)

level2 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2'
 Groups: []
 Datasets: [1x2 struct]
 Datatypes: []
 Links: []
 Attributes: []

In this group, the Groups field is empty and the Datasets field contains two
structures. To get the names of the datasets, examine the Name field of either
of these Dataset structures. This structure provides other information about
the dataset including how many dimensions it contains (Dims) and the data
type of the data in the dataset (Datatype).

dataset1 = level2.Datasets(1)

dataset1 =

 Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

Reading Data from an HDF5 File
To read an HDF5 file, use the hdf5read function, specifying the name of the file
and the name of the dataset as arguments. For information about finding the

New Features
name of a dataset, see “Determining the Contents of an HDF5 File” on
page 6-5.

For example, to read the dataset, /g2/dset2.1 from the HDF5 file example.h5,
use this syntax:

data = hdf5read('example.h5','/g2/dset2.1');

The return value data, contains the values in the dataset, in this case a 1-by-10
vector of single precision values.

data =

 Columns 1 through 8

 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
1.6000 1.7000

 Columns 9 through 10

 1.8000 1.9000

Mapping HDF5 Data Types to MATLAB Data Types
The hdf5read function maps HDF5 data types to MATLAB data types,
depending on whether the data in the dataset is in an atomic data type or a
non-atomic data type.

HDF5 Atomic Data Types. If the data in the dataset is stored in one of the HDF5
atomic data types, hdf5read uses the equivalent MATLAB data type to
represent the data. Each dataset contains a Datatype field that names the data
type. For example, the dataset /g2/dset2.2 in the sample HDF5 file includes
this data type information.

dtype = dataset1.Datatype
dtype =

 Name: []
 Class: 'H5T_IEEE_F32BE'
 Elements: []
6-7

6 MATLAB 6.5.1 Release Notes

6-8
The H5T_IEEE_F32BE class name indicates the data is a four-byte, big-endian,
IEEE floating point data type. (See the HDF5 specification for more
information about atomic data types.)

HDF5 Non-Atomic Data Types. If the data in the dataset is stored in one of the
HDF5 non-atomic data types, hdf5read represents the dataset in MATLAB as
an object. To access the data in the dataset, you must access the Data field in
the object.

To illustrate, this example uses hdf5read to read a dataset called /dataset2
from the HDF5 file, my_hdf5_file.h5. The dataset contains four elements;
each element is an HDF5 array.

data = hdf5read('my_hdf5_file.h5','/dataset2');

In MATLAB, the hdf5read function creates a a 1x4 array of hdf5.h5array
objects to represent this data.

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

Index into the MATLAB array to view the first element in the dataset.

data(1)

hdf5.h5array:

Name: ''
Data: [4x5x3 int32]

To look at the raw data in the HDF5 array element, access the Data field in the
object.

data(1).Data

ans(:,:,1) =
0 1 2 3 4
10 11 12 13 14

New Features
20 21 22 23 24
30 31 32 33 34

ans(:,:,2) =
100 101 102 103 104
110 111 112 113 114
120 121 122 123 124
130 131 132 133 134

ans(:,:,3) =
200 201 202 203 204
210 211 212 213 214
220 221 222 223 224 230 231 232 233 234

The hdf5read function uses any of the following objects to represent HDF5
non-atomic data types.

• hdf5.h5array
• hdf5.h5enum
• hdf5.h5vlen
• hdf5.h5compound
• hdf5.h5string

Reading and Writing Data with JPEG Lossless
Compression
MATLAB now supports reading and writing data that has been compressed
using JPEG lossless compression. With lossless compression, you can recover
the original image from its compressed form. Lossless compression, however,
achieves lower compression ratios than its counterpart, lossy compression.

Using the imread function, you can read data that has been compressed using
JPEG lossless compression.

Using the imwrite function, you can write data to a JPEG file using lossless
compression. For the imwrite function, you specify the Mode parameter with
the 'lossless' value.
6-9

6 MATLAB 6.5.1 Release Notes

6-1
Reading and Writing L*a*b* Color Data
The imread function can now read color data that uses the L*a*b* color space
from TIFF files. The TIFF files can contain L*a*b* values that are in 8-bit or
16-bit CIELAB encodings or in 8-bit or 16-bit ICCLAB encodings.

If a file contains 8-bit or 16-bit CIELAB data, imread automatically converts
the data into 8-bit or 16-bit ICCLAB encoding. The 8-bit or 16-bit CIELAB data
cannot be represented as a MATLAB array because it contains a combination
of signed and unsigned values.

The imwrite function can write L*a*b* data to a file using either the 8-bit or
16-bit CIELAB encoding or the 8-bit or 16-bit ICCLAB encoding. You select the
encoding by specifying the value of the ColorSpace parameter.
0

Major Bug Fixes
6Major Bug Fixes
MATLAB 6.5.1 includes these major bug fixes:

• “Seeking Within a File” on page 6-11

• “Reshaping to More Than Two Dimensions” on page 6-11

• “mkdir No Longer Fails On Windows NT” on page 6-12

• “Using sqrt with Complex Input” on page 6-12

• “Multiplying Matrices with Non-Double Entries” on page 6-12

• “Sorting a Sparse Row Vector or Matrix” on page 6-12

• “diff Produces Correct Results with Logical Inputs” on page 6-13

• “Opening Modal Dialog with Third-Party GUI Open” on page 6-13

• “Serial Port Object with Latest Windows Service Pack” on page 6-13

• “OpenGL Problem Using Notebook” on page 6-13

• “Lcc C Compiler Fixed to Handle Large C Files” on page 6-13

• “Bug Fixes in MATLAB Interface to COM” on page 6-14

• “Bug Fixes in Creating GUIs” on page 6-19

Note In addition to the bug fixes described on this page, there are several
bug fixes relating to MATLAB mathematics that are documented in a
separate HTML bug-fix report.

Seeking Within a File
In Release 13, when you opened a file in write-only ('wb') mode, you could not
seed to a position in the file without first seeking to the beginning of the file.
The fseek function has been fixed to allow seeking from any position of the file.

Reshaping to More Than Two Dimensions
In Release 13, under certain circumstances, reshaping an array to have more
than two dimensions produced a two dimensional result. This has been
corrected.
6-11

6 MATLAB 6.5.1 Release Notes

6-1
mkdir No Longer Fails On Windows NT
In Release 13, if on Windows NT you called the dir, exist, isdir, or what
function on a nonexistent directory name on a network drive, it caused a
windows handle to remain open to that directory name until you exit the
MATLAB session. This condition caused any attempts to use mkdir on that
directory to fail. This problem also affected the mkdir command when run from
a DOS command prompt. This condition would persist until you exited
MATLAB, thus freeing the handle.

This bug is fixed in this release.

Using sqrt with Complex Input
In Release 13, under certain circumstances, the sqrt function incorrectly
produced a real result when called with a complex input. This bug has been
corrected.

Multiplying Matrices with Non-Double Entries
In Release 13, MATLAB gave an incorrect answer or crashed for expressions of
the following forms:

• A' * B
• A * B'
• A' * B'
• A.' * B
• A * B.'
• A.' * B.'
• A' * B.'
• A.' * B'

when either A or B was a numeric, non-double value (single, int32, etc.). This
has been fixed for this release.

Sorting a Sparse Row Vector or Matrix
In Release 13, a segmentation violation occurred when you used the command
sort(S,2) to sort a sparse row vector or to sort a sparse matrix along its rows.
This bug is fixed in this release.
2

Major Bug Fixes
diff Produces Correct Results with Logical Inputs
In Release 13, the diff function could produce an incorrect result when you
passed a logical array to it. This bug is fixed in this release.

Opening Modal Dialog with Third-Party GUI Open
In Release 13, MATLAB would occasionally hang if the user tried to open a
modal dialog box when a third-party GUI was open. This no longer happens.

Serial Port Object with Latest Windows Service
Pack
Under certain hardware configurations, or when using the latest Service Pack
from Microsoft Windows, the serial port object in both MATLAB and the
Instrument Control Toolbox could cause MATLAB to crash or hang. This
problem is resolved in this release.

Several additional problems affecting the serial port have also been identified
and fixed:

1 The serial port object now obeys all supported parity configurations.

2 The serial port object now obeys all supported flow control configurations.

3 On Windows, serial ports higher than COM8 were not recognized by
MATLAB. As of this release, MATLAB supports up to 256 ports.

4 The serial port object generates output empty events after running the serial
port object continuously.

OpenGL Problem Using Notebook
This version of MATLAB uses an improved algorithm for selecting pixel
formats when using the UseGenericOpenGL feature on Windows. This
improvement fixes rendering problems seen with Notebook.

For information on graphics rendering, see Tech Note 1201.

Lcc C Compiler Fixed to Handle Large C Files
Lcc version 2.4.1 MathWorks patch 1.29 corrects a bug encountered when
compiling very large C files. Although this bug has only been observed when
6-13

6 MATLAB 6.5.1 Release Notes

6-1
using large Stateflow® models, we suggest that you upgrade to the new version
to avoid potential problems when compiling MEX-files.

If you choose not to upgrade your version of Lcc, you can select a different C
compiler using mex -setup from the MATLAB command line.

Bug Fixes in MATLAB Interface to COM
This release includes the following bug fixes in the COM interface:

• “Blank Spreadsheet Cells Returned as NaNs” on page 6-14

• “Importing Excel Worksheets Containing Currency Format” on page 6-15

• “Getting the Forms Font Interface” on page 6-15

• “Programmatic Identifiers Containing Space Characters” on page 6-15

• “Naming of Interfaces Returned by invoke or get” on page 6-15

• “Optional Input and Output Arguments Supported” on page 6-16

• “Memory Leak with MATLAB as COM Client” on page 6-16

• “Support for Multiple Type Libraries” on page 6-16

• “MATLAB Now Supports Skipping an Optional Argument” on page 6-16

• “Saving COM Objects Created with actxserver” on page 6-17

• “Creating Certain Servers That Do Not Have Type Libraries” on page 6-17

• “Creating Microsoft Controls” on page 6-18

• “ActiveX Controls Created with Visual Basic 6.0” on page 6-18

• “Type Mismatch Error Fixed” on page 6-18

Blank Spreadsheet Cells Returned as NaNs
When reading from a Microsoft Excel spreadsheet in a COM environment
where MATLAB is the COM client and Excel the server, MATLAB now returns
any empty cells in the spreadsheet as NaNs. In MATLAB 6.5 (Release 13), this
same operation had returned a matrix of empty ([]) values.

For example, if the range A1 to D3 in a currently active workbook sheet contains
no data, MATLAB 6.5.1 returns the following matrix of NaN values:

eActiveSheet = get(e, 'ActiveSheet');
eActiveSheetRange = get(eActiveSheet, 'Range', 'A1', 'D3');

eActiveSheetRange.Value
4

Major Bug Fixes
ans =
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]

Importing Excel Worksheets Containing Currency Format
In MATLAB 6.5, using a COM interface to Excel to import worksheet data
containing currency format failed with either a field access error or
segmentation violation. This bug is fixed in this release.

Getting the Forms Font Interface
In MATLAB 6.5, attempts to get the Font interface from a forms.textbox.1
control, as done in the second line below, caused MATLAB to crash.

h=actxcontrol('forms.textbox.1')
font = h.Font

This bug is fixed in this release.

Programmatic Identifiers Containing Space Characters
Using the actxcontrol function with a ProgID argument containing one or
more spaces failed in MATLAB 6.5. This bug is fixed in this release. For
example, the following command now works:

h = actxcontrol('rmocx.RealPlayer G2 Control.1')
h =
 COM.rmocx.realplayer g2 control.1

Naming of Interfaces Returned by invoke or get
In MATLAB 6.5, interfaces returned by the invoke and get functions were
given a name composed of the programmatic identifier (ProgID) for the
component and the name of the method or property being invoked. In cases
where a method or property implemented multiple interface types, this naming
algorithm resulted in interface names that were not always unique.

For example, when invoking a method that returns an Excel and a Word
interface, you could obtain any number of either type of interface (Excel or
Word), but you could not obtain interfaces of both types. In such cases, you
might be unable to access methods and properties of this interface.
6-15

6 MATLAB 6.5.1 Release Notes

6-1
In this release, interface names constructed by MATLAB are composed of the
name of the type library and the class name, thus ending this potential naming
conflict. If you invoke the method described in the last paragraph, MATLAB
now returns the following for any Excel interfaces that you request:

Interface.Microsoft_Excel_9.0_Object_Library._Application

And MATLAB returns a different handle for Word interfaces:

Interface.Microsoft_Word_9.0_Object_Library._Application

Optional Input and Output Arguments Supported
MATLAB now supports optional input and output arguments passed in COM
method calls. These arguments are declared as [in, optional] and [out,
optional] respectively.

Memory Leak with MATLAB as COM Client
In Version 6.5, a memory leak developed under certain circumstances when
MATLAB was configured as a COM client. This was caused by internal
MATLAB code failing to release memory allocated by the method
StringFromCLSID. This bug is fixed in this release.

Support for Multiple Type Libraries
MATLAB now supports multiple type libraries. If a COM object has many
interfaces that are described in multiple type libraries, MATLAB can now
retrieve the information correctly.

MATLAB Now Supports Skipping an Optional Argument
When calling ActiveX automation server methods, you can skip any optional
arguments in the argument list by specifying that argument value as an empty
matrix ([]). For example, the Add method shown below accepts as many as four
optional arguments:

Add(Before, After, Count, Type)

To call this method, specifying values for After and Count, but no values for
Before or Type, use this syntax.

addedsheet = invoke(Sheets, 'Add', [], Sheet1, 5);
6

Major Bug Fixes
Use [] for any arguments you skip, and that also precede the ones you do
specify in the argument list. In this case, the Before argument is not specified
but two subsequent arguments are.

Saving COM Objects Created with actxserver
Release 13 does not support saving COM objects that have been created with
the actxserver function. You can use save only on control objects (created with
actxcontrol). Attempting to use save on a COM server object causes MATLAB
to hang temporarily, and eventually crash.

This bug has been fixed in this release so that if you now attempt to save a
COM server object, MATLAB saves the object and any base properties of the
object, but does not attempt to save any interfaces that might exist.

The same behavior applies to the pack function on COM objects.

This example creates a server running Microsoft Excel, adds a new property to
the object, and saves it to the file excelserver.mat. It then reloads the server
from the MAT-file.

e = actxserver ('Excel.Application');
addproperty(e, 'NewProperty');
set(e, 'NewProperty', 500);
get(e, 'NewProperty')
ans =
 500

save('excelserver.mat')
clear
get(e, 'NewProperty')
??? Undefined function or variable 'e'.

load('excelserver.mat')
get(e, 'NewProperty')
ans =
 500

Creating Certain Servers That Do Not Have Type Libraries
In the Release 12.1 and Release 13 releases, the actxserver function
generated an error when attempting to create a COM object for certain servers.
One error commonly returned by actxserver in these releases was
6-17

6 MATLAB 6.5.1 Release Notes

6-1
h = actxserver('msdev.application')
??? Error using ==> actxserver
Cannot find type library. COM object creation failed.

This has now been fixed in this release.

h = actxserver('msdev.application')
h =
 COM.msdev.application

Creating Microsoft Controls
Earlier versions of MATLAB would crash if you attempted to create certain
Microsoft COM controls with the actxcontrol function. Examples of these
controls, by programmatic identifier (ProgID), are shown below. MATLAB now
successfully creates the controls.

mschart20lib.mschart msdatalistlib.datacombo
msdatagridlib.datagrid MSComCtl2.DTPicker.2
msdatalistlib.datalist MSHierarchicalFlexGridLib.MSHFlexGrid.6

ActiveX Controls Created with Visual Basic 6.0
In Release 13, if you attach a callback routine to an event, and this event is
eventually fired by a control created in Visual Basic 6.0, an error dialog box
appears with the message “Run-Time error.”

This has been fixed in this release.

Type Mismatch Error Fixed
Some COM objects may define methods that pass scalar inputs by reference.
This might appear in a type library signature as shown here for the x input:

functionname(double *x, [out] double *y)

Note that when input or output is not specifically stated, as is the case here for
x, MATLAB defaults to input ([in]). So the line shown above is interpreted by
MATLAB as

functionname([in] double *x, [out] double *y)

In MATLAB, the [in] and by-reference (*) specifications are considered
incompatible for scalar arguments. In Release 13, MATLAB ignores the
by-reference specifier for scalar inputs and passes such arguments by value
8

Major Bug Fixes
instead. Thus, any modified value for such an argument is not received by the
calling function. You may also see a type mismatch error displayed, even when
trying to access valid control methods.

MATLAB 6.5.1 fixes this bug by treating the [in] specifier for scalar references
as if it were [in,out].

In this example using MATLAB syntax, the GetWinVersionX function passes
six double arguments by reference, yet none are returned in MATLAB 6.5:

GetWinVersionX = int32 GetWinVersionX(
 handle, double, double, double, double, double, double)

In MATLAB 6.5.1, all scalar reference arguments specified (or defaulting to)
[in] are treated as [in,out], and all references cause a value to be returned:

GetWinVersionX = [int32, double, double, double, double,
 double, double] GetWinVersionX(
 handle, double, double, double, double, double, double)

Note that this bug affects only scalar arguments. The VT_DISPATCH and
VT_VOID types are not affected.

Bug Fixes in Creating GUIs
This release includes the following bug fixes related to creating, converting,
and exporting GUIs:

• “Converting a MATLAB 5.3 GUI to MATLAB 6.5” on page 6-19

• “Using GUIDE on Existing GUIs with Empty Tag Property” on page 6-20

• “Exporting GUIs from GUIDE to a Single M-file” on page 6-20

• “MATLAB Hangs when Using Property Inspector from GUIDE” on page 6-20

• “Recursion Limit Error when Running Existing GUIs from GUIDE” on
page 6-20

Converting a MATLAB 5.3 GUI to MATLAB 6.5
Converting a MATLAB 5.3 (R11) GUI to MATLAB 6.5 sometimes resulted in
the error:

Unhandled internal error in guidemfile. Reference to non-existent
field 'blocking'
6-19

6 MATLAB 6.5.1 Release Notes

6-2
This problem has been fixed.

Using GUIDE on Existing GUIs with Empty Tag Property
In MATLAB Version 6.5, editing a GUI that contained a uicontrol whose Tag
property was set to [] (empty) sometimes generated the following error
message:

Unhandled internal error in guidefunc.
Error using ==> set
Value must be a string

This problem has been fixed.

Exporting GUIs from GUIDE to a Single M-file
In MATLAB Version 6.5, some GUIs exported from GUIDE failed to open. In
other cases, attempting to export a GUI resulted in one of the following errors:

??? Error using ==> guidefunc
Error using ==> ==
Matrix dimensions must agree.

??? Error using ==> guidefunc
Error using ==> ==
Function '==' is not defined for values of class 'struct'.

These problems have been fixed.

MATLAB Hangs when Using Property Inspector from GUIDE
Using the Property Inspector from GUIDE sometimes caused MATLAB
Version 6.5 to hang. This problem has been fixed.

Recursion Limit Error when Running Existing GUIs from GUIDE
In MATLAB Version 6.5, running some existing GUIs from GUIDE generated
the following error message:

??? Error using ==> guidefunc
Maximum recursion limit of 500 reached. Use
set(0,'RecursionLimit',N) to change the limit. Be aware that
exceeding your available stack space can crash MATLAB and/or
your computer.
0

Major Bug Fixes
Could not create figure:
127

This problem has been fixed.
6-21

6 MATLAB 6.5.1 Release Notes

6-2
Upgrading from an Earlier Release
If you are upgrading from a release earlier than Release 13, see “Upgrading
from an Earlier Release” on page 7-49 of MATLAB 6.5 Release Notes.

Rebuild Macintosh MEX-files
Macintosh MEX-files (named .mex) built with MATLAB 5.2 or older will not
work with MATLAB 6.5 or later. You must recompile these files, creating a new
file with the file extension .mexmac.

Function and Data Type Names in Generic DLL
Interface
The following functions have been renamed since the initial download release
of the Generic DLL Interface:

• The libmethods function is now called libfunctions.

• The libmethodsview function is now called libfunctionsview.

All data types ending in Ref are now suffixed with Ptr. For example, doubleRef
is now called doublePtr, and int16Ref is now int16Ptr.

All data types ending in RefPtr are now suffixed with PtrPtr. For example,
doubleRefPtr is now called doublePtrPtr, and int16RefPtr is now
int16PtrPtr.
2

Known Software and Documentation Problems
6Known Software and Documentation Problems
For a list of bugs reported in the previous release that remain open, see “Known
Software and Documentation Problems” on page 7-86 in the MATLAB 6.5
Release Notes.

Using xlsfinfo on Systems Without Excel
There is a bug in the xlsfinfo function that causes it to fail with the following
error message when run on systems where Microsoft Excel is not installed.

Undefined function or variable 'xlsfinfo_old'.

We intend to fix this in the next release of MATLAB.
6-23

6 MATLAB 6.5.1 Release Notes

6-2
4

Development Environment Features 1-2
Mathematics Features 1-15
Programming and Data Types Features 1-21
Programming Tips Documentation 1-30
Graphics Features 1-31
External Interfaces/API Features 1-32
Creating Graphical User Interfaces (GUIDE) Features . . . 1-40

Major Bug Fixes 1-43

Platform Limitations 1-44
Patch Required for HP-UX 11.0 1-44
Development Environment Limitations 1-44
Mathematics Limitations 1-46
Graphics Limitations 1-47
Creating Graphical User Interfaces (GUIDE) Limitations . . 1-47
You May Need to Overwrite the MATLAB Default

Choice of BLAS 1-47

Upgrading from an Earlier Release 1-49
Development Environment Upgrade Issues 1-49
Mathematics Upgrade Issues 1-51
Programming and Data Types Upgrade Issues 1-52
Graphics Upgrade Issues 1-75
External Interfaces/API Upgrade Issues 1-76
Creating Graphical User Interfaces (GUIDE) Upgrade

Issues . 1-85

Known Software and Documentation Problems 1-86
7

MATLAB 6.5 Release
Notes

New Features 1-2

7 MATLAB 6.5 Release Notes

7-2
New Features
This section introduces the new features and enhancements added in MATLAB
6.5 since Version 6.1 (Release 12.1). This discussion of new MATLAB features
is organized into the following categories:

• “Development Environment Features” on page 7-2

• “Mathematics Features” on page 7-15

• “Programming and Data Types Features” on page 7-21

- “Programming Tips Documentation” on page 7-30

• “Graphics Features” on page 7-31

• “External Interfaces/API Features” on page 7-32

• “Creating Graphical User Interfaces (GUIDE) Features” on page 7-40

If you are upgrading from a release earlier than Release 12.1, then you should
also see “New Features” on page 8-2 in the MATLAB 6.1 Release Notes.

Development Environment Features
MATLAB 6.5 adds the following development environment features and
enhancements.

JVM Version
On the Windows, Linux, Solaris, and Macintosh platforms, MATLAB uses Java
Virtual Machine 1.3.1. Other platforms that support Java continue to use the
JVM version they used for Release 12. To see the Java version that MATLAB
uses, type

version -java

The HP-UX and IBM platforms do not support Java-based graphical user
interfaces in MATLAB, and related products that rely on Java are not available
on these platforms. See “Platform Limitations” on page 7-44 for details.

New Features
Startup
The toolbox path caching preference is on by default. This can result in
significantly faster startup when MATLAB runs over a network or when you
have many toolboxes. You will not see the improvement the first time you run
MATLAB 6.5, but will after that. If you add or remove files and directories from
$matlabroot/toolbox directories, you may need to update the cache.

Desktop

Start Button. Click the Start button, , located in the lower left corner of
the desktop, to readily access common MATLAB tools and features. It offers
capabilities similar to those in the Launch Pad.

Status Bar. The status bar in the desktop now indicates the current state of
MATLAB operations. For example, a Busy message appears while MATLAB is
running an M-file.

New Profiler. Use the new Profiler graphical interface to assess your M-files so
you can make changes to improve their performance. Select View -> Profiler
from the desktop, or type profile viewer. The Profiler helps you take
advantage of the new performance improvements that are part of the JIT
Accelerator for MATLAB.

The new Profiler is based on the results returned by the profile function. You
can still use the profile and profreport functions as you used them in
Release 12.1.

Check for Updates. From the Web menu, select Check for Updates. A dialog box
appears, listing the versions for all MathWorks products installed on your
system. Click Check for Updates in the dialog box, which accesses the
MathWorks Web site to determine if more recent versions are available.

Access MATLAB Central. From the Web menu, select MATLAB Central to access
a page on the MathWorks Web site for exchanging M-files with other users and
for accessing the comp-sys.soft.matlab Usenet newsgroup.

Change Current Directory. On UNIX platforms, you can now change the current
directory field in the desktop toolbar using the ... button to browse for the
directory.
7-3

7 MATLAB 6.5 Release Notes

7-4
Apply Preferences. There is now an Apply button in the Preferences dialog box.
When you click Apply, the preference change is made, but the dialog box
remains open. This allows you to more easily experiment with changes to
preferences.

Command Window

Find Feature. To find a term in the Command Window, select Edit -> Find. The
Find dialog appears, in which you can enter a term and look for the previous
or next occurrence.

Incremental Search. This is similar to the Emacs incremental search feature. In
the Command Window, press Ctrl+S (or Ctrl+Shift+S for Windows key
bindings) to display an incremental search field. Type a string in the field and
the next occurrence of that string in the Command Window is highlighted.

Hyperlinks to Run Functions. A new feature, matlab:, creates a hyperlink for
specified text, which when clicked, runs the specified function. For example,

disp('Generate magic square')

displays the link

Generate magic square

in the Command Window. When the user clicks the "Generate magic square"
link, MATLAB runs magic(4). Use this feature, for example, with the disp or
fprintf functions.

Printing. You can now specify options for printing from the Command Window,
such as including a header and printing line numbers. Select File -> Page
Setup to set options.

New Features
Preferences. There are new Command Window preferences for Keyboard and
Indenting:

• Command line key bindings—Specify Emacs (MATLAB standard) or
Windows. For example, with Emacs, Ctrl+F moves the cursor forward one
character, whereas with Windows, Ctrl+F opens the Find dialog box.

• Tab key—These preferences previously existed on the general preferences
tab for the Command Window.

• Parentheses matching options—MATLAB alerts you to matches and
mismatches in pairs of delimiters, (that is, in parentheses (), brackets [], and
braces { }), based upon MATLAB language syntax rules.

Open Selection. While in the Command Window, you can select text, right-click,
and select Open selection. This runs the open function for the item you
selected so that it opens in the appropriate tool. For example, you can open a
variable in the Workspace browser, or open a file or function in the Editor. If
no tool exists for the selected item, Open selection calls edit.

Command History

Printing. You can print the contents of the Command History and specify
various printing options, such as including a header and printing line numbers.
From the Command History window, select File -> Page Setup to set options.

Find Feature. To find a term in the Command History, select Edit -> Find. The
Find dialog appears, in which you can enter a term and look for the previous
or next occurrence.

Autosave Command History. The Command History is automatically saved to a
file on a regular basis. Specify options for what is saved and how often using
Command History preferences.

Workspace Browser
You can rename a variable in the Workspace browser by right-clicking it and
selecting Rename from the context menu. You can also select and copy
variables in the Workspace browser, which puts their names (comma
separated) onto the clipboard. You can then paste the names, for example, into
the Command Window.
7-5

7 MATLAB 6.5 Release Notes

7-6
If you copy data from another application to the clipboard, use Ctrl+V in the
Workspace browser to import the data to MATLAB using the Import Wizard.

Set Path
In the Set Path dialog box, you can now select multiple directories to remove
from or to move within the path.

Current Directory Browser

Find M-Files Only. There are two new Look in options in the Find dialog box. Use
them to limit the search in the current directory or in the entire MATLAB path
to find only M-files.

Deleted Files to Recycle Bin. On Windows platforms, files you delete while using
the Current Directory browser go to the Recycle Bin. You can by bypass the
Recycle Bin by using Shift+Delete.

Change Current Directory. For UNIX platforms, you can now change the current
directory field in the Current Directory browser toolbar using the ... button to
browse for the directory.

Changes Automatically Update Display. When you make changes to the current
directory outside of MATLAB, the changes are automatically reflected in the
Current Directory browser display. You do not have to select Refresh to show
the changes.

New Features
File Operations
Following are functions that are new or have changed since the previous
release. For more information, type doc functionname.

Function New or
Changed

Description

copyfile Changed The writable argument has been
superseded by the f argument, although
writable is still allowed for MATLAB 6.5.
The function now also copies directories. It
replaces the destination files or directories
with the same name as the source files or
directories without a warning—in previous
versions, there was a warning in that event.
If the destination files or directories are
read-only and the f (or writable) argument
is not used, copyfile will fail.

fileattrib New Set or get attributes of file or directory. The
fileattrib function is like the DOS attrib
command and the UNIX chmod command.

mkdir Changed Modified the message status—mkdir no
longer returns 2 if the directory already
exists, but instead displays a warning. It
also has an enhanced return format.

movefile New Move file or directory. Can also be used to
rename a file or directory.

rmdir New Remove directory, and optionally its
contents as well.

winopen New For Windows users, allows you to open a file
in the appropriate application, as if you
double-clicked it in Windows Explorer.
7-7

7 MATLAB 6.5 Release Notes

7-8
Array Editor

Spreadsheet Behavior. You can now select and delete columns. You can cut, copy,
paste, and delete cells. You can also exchange cells with Microsoft Excel via the
operating system clipboard using these features.

You can set a preference to specify where the cursor moves to when you press
Enter.

Greater Number of Elements. The Array Editor can now show arrays with more
than 10,000 elements. It does not support arrays with more than 65,536 (2^16)
elements.

Editor/Debugger

Column Number, Line Number, and Current Function/Subfunction. In the Editor status
bar, you can see the column number, line number, and function or subfunction
for the current cursor location. When the Editor is docked in the desktop, the
information appears in the desktop status bar.

Autosave Files. Files you change in the Editor are now automatically saved to a
backup file on a regular basis. Use File -> Preferences -> Editor/Debugger ->
Autosave to specify autosave options.

Incremental Search. This is similar to the Emacs incremental search feature.
Press Ctrl+S (or Ctrl+Shift+S for Windows key bindings) to display an
incremental search field. Type a string in the field and the next occurrence of
that string in the current file is highlighted.

Find Previous. You can find the previous occurrence of a string in a file by using
Edit -> Find Previous after using any of the other Edit -> Find menu items.

Comment Formatting. You can specify a preference for the maximum width of
comment lines and then apply that maximum to selected lines. You can also
specify a preference to automatically wrap comment lines when they reach the
maximum width.

Preferences for Parentheses Matching. There are new preferences for parentheses
matching. The Editor/Debugger alerts you to matches and mismatches in pairs
of delimiters, that is, in parentheses (), brackets [], and braces { }, based upon
MATLAB language syntax rules.

New Features
Printing Options. You can specify options for printing a file from the Editor, for
example, including a header, by using File -> Page Setup.

Invalid Breakpoints. When breakpoints are invalid, they appear gray instead of
red. Breakpoints are invalid if there are unsaved changes or if there is a syntax
error in the file. The breakpoints become valid when you save the file or when
you fix the syntax error and save the file.

Cannot Save in Debug Mode. You cannot save changes to an M-file while in debug
mode. First quit debug mode and then save the file.

Integrated Text Editor Preference. If you install EmacsLink, a tool that allows you to
debug M-files from the Emacs editor, you can specify an Editor/Debugger
preference to use Emacs and EmacsLink for your default editing and
debugging tools.

Wider and Resizable Line Number Column. You can view line numbers that contain
up to nine digits. Drag the separator bar to the right of the line number column
to make the column narrower or wider, allowing you to save space or see more
digits.

Subfunctions Listed Alphabetically. When you click the function button on the
toolbar, the subfunctions are listed alphabetically. Previously they were listed
in the order that they appeared in the M-file.

Open Selection. In an open M-file, the Open Selection feature has been
enhanced. You can now jump from a subfunction call to the subfunction code
within the current function M-file. To use this feature, select a subfunction call
in an M-file, right-click, and select Open Selection from the context menu (or
select Open Selection from the File menu). The Editor scrolls to that
subfunction in the M-file. If that subfunction does not exist in the file, the open
function runs for the selected item, so that it opens in the appropriate tool. For
example, you can open a variable in the Workspace browser, or open another
file or function in the Editor. If no tool exists for the selected item, Open
selection looks for a matching file in a private directory in the current
directory.

Default Directory in Open Dialog Box and for New Files. The Open dialog box now
opens to the MATLAB current directory. However, if you access the Open
dialog box from the Editor, it opens to the directory for the current file in the
7-9

7 MATLAB 6.5 Release Notes

7-1
Editor. When you create a new file, it is located in the MATLAB current
directory.

Bookmark Support for All File Types. You can include bookmarks in any file type.
Previously you could include bookmarks only in M-files.

New and Discontinued Features in edit Function. There is a new form of the edit
function, edit fun1 fun2 fun3 ..., which opens all of the specified files in the
default editor.

No longer supported are edit fun1 in fun2 and edit fun(a,b,c).

Save Not Available. Save is only available if a file has been changed. If there are
no unsaved changes in a file, you can still use Save As, but you cannot use
Save.

Help and Help Browser

Demos. To access demonstrations for all the MathWorks products you have
installed, use the new Demos tab in the Help browser.

Boolean Operators in Search. In the Help browser Search pane, you can include
the Boolean operators AND, OR, and NOT between terms you enter in the Search
field. The operators must be in all capital letters and there must be a space
before and after each operator.

For example, type print OR printing AND figure NOT exporting to find all
pages that contain the words print and figure, or printing and figure, but
only if the page does not contain the word exporting. At the top of the results
list are any pages that contain all the AND and OR words in page titles.

Changes to Search Term Highlights. When you perform a search and select a
resulting page to view, each word in the search term appears highlighted in a
different color in the page. To clear the highlights, click the reload button
in the Help browser toolbar.

Setting the Documentation Location. You can now set the location where help files
are stored (called the Documentation location in Help preferences) using the
docroot function. You can include a docroot command in an M-file, such as a
startup.m file.
0

New Features
Open Link in New Window. To open a linked page in a separate Help browser
window, press Alt and right-click the link, or click the middle mouse button.

Visited Links. Visited links usually appear in a different color than unvisited
links.

Print Range of Pages. When you print from the Help browser, the Pages field in
the Print dialog box now shows the total number of printed pages required for
the currently displayed page and lets you specify which of those pages to print.

Document Type Icons. Icons at the top two levels of the Contents pane indicate
the type of document so you can quickly find a particular document type in the
listing. For example, getting started documentation is represented by (a
green arrow), and function and blockset reference documentation are
represented by (orange pages).

Release Notes Location. Release notes for a product are now listed with that
product in the Contents pane.

CD-ROMs for Documentation. For Windows platforms, there are now two
CD-ROMS for documentation. To read PDF documentation from the CD-ROM,
use the PDF Documentation CD.

Source Control
This release features expanded source control capabilities on PC platforms.
You can interface to your source control system from by using MATLAB,
Simulink, or Stateflow menus, or by using functions from the MATLAB
Command Window.
7-11

7 MATLAB 6.5 Release Notes

7-1
The available source control system interface operations on PC platforms are

• Get latest version of file

• Add file

• Check out file

• Check in file

• Undo check out

• Remove file

• Show file version history

• Show file version differences

• Show file properties

• Start source control system

Notebook

Word Macros. Newer versions of Word have macro security features that might
impact your use of Notebook.

Word Versions Supported. Word for Office 2000 and 2002 (Office XP) are now
supported. Word for Office 95 is no longer supported.

Using setup Option. The setup option is now easier to use. After running
notebook -setup, you are prompted for your Windows version. The function
performs all the remaining configuration with no additional input required
from you. Only if the setup cannot find the files needed will you be prompted
for additional information.

General

Demos. View and run demos via the new Demos pane in the Help browser. For
platforms that do not support Java, run the demo command, which opens the
Release 12.1 demo interface, and then follow instructions to access the demo
files.

New perl Function. A new function, perl, calls the Perl script specified by the file
perlfile using the appropriate Perl executable.
2

New Features
New Startup Option. There is a new startup option, -logfile log. It makes a
copy of any output to the Command Window in the file log, including any crash
reports.

Import/Export

New Functions for Exchanging Files with the Internet. MATLAB provides a set of
functions for exchanging files with the Internet. These are URL, ZIP, and
e-mail functions.

• Downloading URL content—From within MATLAB, you can read and save
the content of a URL. The urlread function reads the content to a string
variable in the MATLAB workspace. The urlwrite function saves the
content to a file.

• ZIP functions—You can compress and uncompress files and directories from
MATLAB using the zip and unzip functions.

• Sending e-mail—Use sendmail to send an electronic mail message, and
optionally attachments, to a list of addresses.

File Format Support. The following table lists new import and export functions
and highlights changes to existing functions.

Function Purpose

cdfepoch This new function converts a MATLAB date
number or date string into the format supported by
the Common Data Format (CDF).

cdfwrite This new function supports writing data from
MATLAB into Common Data Format (CDF) files.

imfinfo The imfinfo function can now return information
about Sun Raster image (RAS) files. In addition,
when used with JPEG files, imfinfo now returns
any comments that may be included in the
graphics file. These comments are returned in the
comment field as a cell array.
7-13

7 MATLAB 6.5 Release Notes

7-1
MATLAB HDF Import Tool. MATLAB 6.5 includes a new graphical user interface for
importing data from an HDF or HDF-EOS files. This tool provides a graphical
view of the data sets and metadata in an HDF file and lets you import selected
data sets from the file by clicking a button.

imformats This new function eases the task of adding read
and write support for new file formats.

imread The imread function can now read Sun Raster
image (RAS) files and files over the internet.

imwrite The imwrite function now supports two new
formats: Sun Raster image (RAS) and PNM. PNM
is not a file format but represents three other
image formats, PBM, PGM, and PPM. When you
specify PNM, imwrite chooses one of these three
formats based on the contents of the data. In
addition, imwrite supports the JPEG-specific
parameter comment, in which you can specify any
comment you want included in a JPEG file.

multibandread This new function supports importing data from
files that contain data divided into multiple bands,
sometimes called raw files.

multibandwrite This new function supports writing
multidimensional arrays from MATLAB to a file in
multiband format.

Function Purpose (Continued)
4

New Features
Mathematics Features
MATLAB 6.5 adds the following mathematics features and enhancements:

• “Delay Differential Equations” on page 7-15

• “Singular Boundary Value ODE Problems” on page 7-15

• “Integration Over a Volume” on page 7-16

• “Sparse, Square, Banded Matrix Left Division” on page 7-16

• “Sparse Matrix LU Factorization and Solve” on page 7-16

• “Matrix Math Performance Improvements for Triangular Matrices” on
page 7-17

These features are described below. At the end of this section are tables that
summarize changes to the MATLAB math functions:

• “Summary of New Functions” on page 7-18

• “Summary of Changed Functions” on page 7-18

Delay Differential Equations
MATLAB now provides the capability to solve delay differential equations
(DDEs) with constant delays. The DDE solver, dde23, provides an interface
that is similar to the MATLAB ODE solver interface and is as easy to use. The
supporting functions ddeset, ddeget, and deval enable you to set integration
properties that affect problem solution and to evaluate the numerical solution
obtained with dde23.

See “Initial Value Problems for DDEs” and the function descriptions in the
MATLAB documentation for detailed information.

Singular Boundary Value ODE Problems
The function bvp4c can now solve a class of singular BVPs of the form

posed on an interval with . The bvpset function provides a new
'SingularTerm' integration property, which you can use to pass the constant
matrix to bvp4c.

y′ 1
x
---Sy f x y,()+=

0 g y 0() y b(),()=

0 b,[] b 0>

S

7-15

7 MATLAB 6.5 Release Notes

7-1
See “Solving Singular BVPs” and the function descriptions in the MATLAB
documentation for more information.

Integration Over a Volume
A new function, triplequad, evaluates a triple integral that you provide as a
function, fun(x,y,z), over a three dimensional rectangular region. As a
default, triplequad uses the quadrature function quad to perform the
integration. You can elect to use quadl instead or provide your own quadrature
function.

Logarithmic Derivative of the Gamma Function
A new function psi evaluates the function, also known as the digamma
function, for each element of an array X. You can also use psi to evaluate the
kth derivative of , or a sequence of derivatives of different orders, at the
elements of X.

Sparse, Square, Banded Matrix Left Division
Matrix left division (\) now uses banded solvers for X = A\b where A is sparse,
square, and banded. Band density is defined as
(# nonzeros in the band)/(# nonzeros in a full band). Band density = 1.0 if
there are no zeros on any of the three diagonals.

If A is real and tridiagonal, i.e., band density = 1.0, and B is real with only one
column, X is computed quickly using Gaussian elimination without pivoting.

If the tridiagonal solver detects a need for pivoting, or if A or B is not real, or if
B has more than one column, but A is banded with band density greater than
the new spparms parameter 'bandden' (default = 0.5, in the interval
[0.0,1.0]), then X is computed using LAPACK.

Sparse Matrix LU Factorization and Solve
LU factorization and solve for sparse matrices now uses UMFPACK.
UMFPACK is a set of routines for solving unsymmetric sparse linear systems,

, using the Unsymmetric MultiFrontal method. It provides a
considerable increase in computational speed for these matrices.

ψ

ψ

Ax b=
6

New Features
lu Function. The lu function provides two new syntaxes for sparse matrices.
These new syntaxes use UMFPACK for factorization.

[L,U,P,Q] = lu(X)
[L,U,P,Q] = lu(X,thresh)

The syntaxes return a unit lower triangular matrix L, an upper triangular
matrix U, and permutation matrices P and Q, so that P*X*Q = L*U. The thresh
argument (default = 0.1, in the interval [0.0,1.0]) controls pivoting.

\ (backslash). Matrix left division (\) uses UMFPACK for square sparse
matrices that are not banded. You can control pivoting with the new spparms
parameter 'piv_tol' (default = 0.1, in the interval [0.0,1.0]).

Information about UMFPACK is available online at
http://www.cise.ufl.edu/research/sparse/umfpack/. The UMFPACK
Version 4.0 User Guide is available at
http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf.
Type help umfpack at the command line for summary copyright and licensing
information.

Matrix Math Performance Improvements for Triangular Matrices
The speed for solving linear systems AX = B where A is upper or lower
triangular, and B is an m-by-n matrix, has been improved through the use of
optimized Basic Linear Algebra Subroutines (BLAS). Optimized BLAS is
provided by Automatically Tuned Linear Algebra Software (ATLAS).

BLAS has also been used to improve certain matrix multiplication operations,
i.e., matrix*vector, vector*matrix, and rowvector*columnvector.

For the first time, ATLAS BLAS have been tuned to the Pentium 4 under both
Windows and Linux operating systems, resulting in improved speed for core
linear algebra functions.

By making better use of cache, the speed of matrix transposition has been
increased for all matrices, but particularly for matrices whose size is a power
of 2.
7-17

7 MATLAB 6.5 Release Notes

7-1
Summary of New Functions

Summary of Changed Functions

Function Purpose

dde23 Solve initial value problems for delay differential
equations (DDEs) with constant delays

ddeget Extract properties from the options structure created
with ddeset

ddeset Create/alter a DDE options structure that contains
solver integration properties

psi Psi (polygamma) function, i.e., the logarithmic derivative
of the gamma function

triplequad Numerically evaluate triple integral

Function Enhancement or Change

/ (slash)
\ (backslash)

Now use banded solvers for sparse, square, banded
matrices. See “Sparse, Square, Banded Matrix Left
Division” on page 7-16 for more information.

Now use UMFPACK for left and right division of square
sparse matrices that are not banded. See “Sparse Matrix
LU Factorization and Solve” on page 7-16 for more
information.

/ (slash)
\ (backslash)

The result of dividing a singular lower or upper triangular
matrix by any other matrix, using either left (\) or right (\)
division, may change. Previously, for singular square
matrices A for which rcond(A) = 0, the result was always a
matrix of Infs. This change is a result of the performance
improvements described above.

See “Mathematics Upgrade Issues” on page 7-51 for
examples.
8

New Features
bvp4c
bvpset

A new option 'SingularTerm' enables you to specify a
matrix as the singular term of singular BVPs. Set this
option to the constant matrix for equations of the form

corrcoef Provides three new syntaxes:

[R,P] = corrcoef(...) returns P, a matrix of p-values for
testing the hypothesis of no correlation.

[R,P,RLO,RUP] = corrcoef(...) returns matrices RLO and
RUP which contain lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...)
accepts parameter-value pairs that enable you to override
the default confidence interval, and specify how to treat rows
of X that contain NaNs.

deval Now also accepts output from dde23

gallery house A new syntax
[v,beta,s] = gallery('house',x,k)
returns the norm of x. You can use the new
argument k to control the sign of s.

leslie gallery('leslie',a,b) returns the n-by-n
Leslie matrix with average birth numbers
a(1:n) and survival rates b(1:n-1).

orthog gallery('orthog',n,k) adds a new type, k, of
matrix. k = 6 specifies a symmetric matrix
arising as a discrete cosine transform such
that Q(i,j) =
sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n).

Function Enhancement or Change (Continued)

S

y ′ S y
x
--- f x y p, ,()+=
7-19

7 MATLAB 6.5 Release Notes

7-2
randsvd For large dimensions, a new argument,
method, enables you to specify an alternative
method that is much faster for large
dimensions even though it uses more flops.

legendre A new syntax legendre(n,X,'norm') computes the fully
normalized associated Lengendre functions .

lsqr A new syntax
[x,flag,relres,iter,resvec,lsvec] = lsqr(...)
returns, in the vector lsvec, estimates of the scaled normal
equations residual at each iteration.

lu Uses UMFPACK to improve speed for factorization of
sparse matrices, and to add two new syntaxes for sparse
matrices.

[L,U,P,Q] = lu(X)
[L,U,P,Q] = lu(X,thresh)

The new output Q is the column permutation matrix that is
used to reduce fill-in in the sparse case. P is the row
permutation matrix that is used for numerical stability. The
thresh argument controls pivoting. See “Sparse Matrix LU
Factorization and Solve” on page 7-16 for information about
UMFPACK.

qrdelete
qrinsert

Two new syntaxes for each function provide for the deletion
and insertion of rows, as well as columns, in a QR
factorization:

[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

The original syntaxes qrdelete(Q,R,j) and
qrinsert(Q,R,j,x) default to 'col'.

Function Enhancement or Change (Continued)

Nn
m x()
0

New Features
Programming and Data Types Features
MATLAB 6.5 adds the following programming and data types features and
enhancements:

• “JIT Accelerator with MATLAB” on page 7-21

• “Regular Expression Support” on page 7-22

• “New Functions” on page 7-22

• “Cell to Matrix Conversion Functions” on page 7-23

• “New Warning and Error Handling Features” on page 7-24

• “Dynamic Field Names for Structures” on page 7-25

• “New Logical AND and OR Operators for Short-Circuiting” on page 7-26

• “New Output from ismember” on page 7-26

• “New true and false Functions” on page 7-27

• “Interrupting try-catch in a Loop” on page 7-27

• “Changes to copyfile and mkdir” on page 7-28

• “mfilename Returns Path and Class Information” on page 7-28

• “Support for the 64-Bit Integers int64 and uint64” on page 7-28

• “64-Bit File Handling” on page 7-29

• “MATLAB Audio Enhancements” on page 7-29

• “New MATLAB Timer Object” on page 7-30

JIT Accelerator with MATLAB
MATLAB 6.5 includes significant changes in the way MATLAB processes
M-file functions and scripts. These changes affect the performance of MATLAB

spparms Provides two new parameters for sparse matrix division.

'piv_tol' Pivot tolerance used by the UMFPACK
LU-based \ and /.

'bandden' Band density used by LAPACK-based \ and /
for banded matrices.

Function Enhancement or Change (Continued)
7-21

7 MATLAB 6.5 Release Notes

7-2
and can give you a substantial performance increase over earlier MATLAB
versions for many MATLAB applications.

Speeding up the execution of programs written in MATLAB is an ongoing
MathWorks endeavor that will be delivered over a number of product releases.
The documentation on “Performance Acceleration” explains how to best make
use of the JIT Accelerator, how to use the MATLAB Profiler to optimize your
performance, and includes several sample programs to illustrate how you can
make your M-file programs run faster.

Regular Expression Support
MATLAB now supports searching and replacing characters using regular
expressions. The following new functions support this capability. For more
information, see “Regular Expressions” in the MATLAB documentation.

New Functions
MATLAB 6.5 added new functions for working with error generation, regular
expressions, sorted sets, integer conversion, and for performing file operations.

Function Description

regexp Match regular expression.

regexpi Match regular expressions, ignoring case.

regexprep Replace string using regular expression.

Function Description

false False array

fileattrib Set or get attributes of file or directory

int64 Convert to signed 64-bit integer

isequalwithequalnans Determine if arrays are numerically equal,
treating NaNs as equal

issorted Determine if set elements are in sorted order
2

New Features
Cell to Matrix Conversion Functions
The following functions, previously belonging to the Neural Network Toolbox,
are now core MATLAB functions.

lasterror Return last error message and related
information

movefile Move file or directory

orderfields Order fields of a structure array

perl Call Perl script using appropriate operating
system executable

rethrow Reissue error

rmdir Remove directory

true True array

uint64 Convert to unsigned 64-bit integer

winopen Open file in appropriate application (Windows
only)

xmlread Parse XML document and return Document
Object Model node

xmlwrite Serialize XML Document Object Model node

xslt Transform XML document using XSLT engine

Function Description

cell2mat Combine a cell array of matrices into one matrix

mat2cell Break matrix up into a cell array of matrices

Function Description (Continued)
7-23

7 MATLAB 6.5 Release Notes

7-2
New Warning and Error Handling Features
These features include:

• “Formatted Error and Warning Strings”

• “Message Identifiers”

• “Warning Control Features”

Formatted Error and Warning Strings. Prior to MATLAB 6.5, the error and warning
functions only accepted a simple string as an input argument, as shown here
for error:

error('error_string')

In MATLAB 6.5, error and warning now accept a format string and one or
more parameters, using a syntax similar to the MATLAB sprintf function.
The syntax for error is shown here. Use the same syntax for warning:

error('format-string', arg1, arg2, ...)

Examples for using this syntax with error and warning are

error('File %s not found', filename);
warning('Ambiguous parameter name, "%s".', param)

Message Identifiers. A message identifier is a tag that you attach to an error or
warning statement that makes that error or warning uniquely recognizable by
MATLAB. You can use message identifiers with warnings to control any
selected subset of the warnings in your programs, or with error reporting to
better identify the source of an error.

Some examples of message identifiers are

MATLAB:divideByZero
Simulink:actionNotTaken
TechCorp:notFoundInPath

Message identifiers are used in warning control (see next section) and also to
enable the lasterr and lasterror functions to better identify the source of an
error.

See “Using Message Identifiers with lasterr” in the MATLAB documentation.
4

New Features
Warning Control Features. In this release, MATLAB gives you the ability to
control what happens when a warning is encountered during M-file program
execution. New options available in this release include

• Display selected warnings

• Ignore selected warnings

Depending on how you set up your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just the
most recently invoked warning. See the section “Warning Control” in the
MATLAB documentation for more information on this feature.

Also read the section, “Warning Control Upgrade Issues” on page 7-65 in these
Release Notes to see how your existing programs might be affected by this
change.

Dynamic Field Names for Structures
You can now reference structures using field names that are computed at
run-time using the new dynamic field names feature in MATLAB. The
dot-parentheses syntax shown below tells MATLAB to interpret expression as
a dynamic field name:

structure_name.(expression)

This added capability now completes the following table by providing full
dynamic access to all data types.

In many cases, you can use dynamic field names in place of the getfield and
setfield functions. Dynamic field names offer improved execution speed and
code readability. Compare the following for readability:

S(m,n).(fieldname)(k) = value

S = setfield(S,{m,n},fieldname,{k},value)

Data Type Static (compile time) Dynamic (run-time)

Matrix A(2,3) A(m,n)

Cell Array C{4} C{k*2}

Structure S.name S.(field)
7-25

7 MATLAB 6.5 Release Notes

7-2
Technical Note 32236 provides more information about using the getfield and
setfield functions versus dynamic field names. See “Dynamic Field Names”
in the MATLAB documentation for more information on this feature.

New Logical AND and OR Operators for Short-Circuiting
Prior to this release, the MATLAB & (AND) and | (OR) operators served two
purposes: that of a logical operator and also an array operator. These two roles
at times conflicted, resulting in technically correct, yet possibly confusing
evaluations.

MATLAB 6.5 introduces two additional AND and OR operators: && and ||. Use
these new operators to evaluate a compound logical expression, especially
when short-circuiting is required. Use the & and | operators for element-wise
operations on arrays.

See “Short-circuit Operators” in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

New Output from ismember
The ismember function now returns an optional, second output indicating the
indices at which members of a set are located. The syntax is

[tf, loc] = ismember(A,S,...)

When you use this syntax, ismember returns index vector loc containing the
highest index in S for each element in A that is a member of S. For those
elements of A that do not occur in S, ismember returns 0.
6

New Features
For example,

a = reshape(1:5, [5 1])
set = [5 2 4 2 8 10 12 2 16 18 20 3];
[tf, index] = ismember(a, set);

index
index =
 0
 8
 12
 3
 1

New true and false Functions
MATLAB has two new functions for logical operations: true and false. true is
shorthand for logical(1) and false for logical(0). Both functions accept
input arguments that enable you to build n-dimensional arrays of logical 1 or 0.

This example builds a 3-by-5 array of type logical:

a = true(3,5)
a =
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

true(n) is equivalent to logical(ones(n)), however true(n) is easier to use
and will improve the readability of your program. Type help true or help
false for more information.

Interrupting try-catch in a Loop
try-catch statements no longer catch Ctl+C interrupts. Prior to this release,
pressing Ctl+C while a try block was executing would result in a jump to the
corresponding catch block. In MATLAB 6.5, a Ctl+C aborts execution and
returns control to the Command Window, regardless of what code is executing.
7-27

7 MATLAB 6.5 Release Notes

7-2
For example, in MATLAB 6.5, you can use Ctl+C to interrupt the loop shown
here. You could not interrupt this loop in earlier MATLAB versions:

for k=1:100
 try
 pause(1);
 catch
 end
end

Changes to copyfile and mkdir
The copyfile and mkdir functions have changed since the previous release.

Changes to copyfile. The writable argument has been superseded by the f
argument, although writable is still allowed for this release. The function now
also copies directories. It replaces the destination files or directories of the
same name as the source files or directories without a warning. (In previous
versions, there was a warning in that event.) If the destination files or
directories are read-only and the f (or writable) argument is not used,
copyfile will fail.

Change to mkdir Return Status. mkdir no longer returns 2 if the directory already
exists, but instead displays a warning. It also has an enhanced return format.

mfilename Returns Path and Class Information
You can now request more information from the mfilename function:

• mfilename('fullpath') — Returns the full path and name of the M-file in
which the call occurs, not including the filename extension.

• mfilename('class') — In a method, returns the class of the method, not
including the leading @ sign. If called from a non-method, it yields the empty
string.

Support for the 64-Bit Integers int64 and uint64
MATLAB now supports signed and unsigned 64-bit integers. Use the int64
and uint64 functions to convert a number to a signed or unsigned 64-bit
integer.
8

New Features
64-Bit File Handling
MATLAB low-level file handling functions (fopen, fseek, ftell, etc.) now
support 64-bit file offsets. This enables you to perform low-level I/O operations
on files greater than 2 GB in size. (The limit in previous versions of MATLAB
was 2^31-1 bytes, or 2 GB.)

64-bit support is available on the following platforms:

• Windows

• Solaris

• MacIntosh

• Alpha

• HPUX 11.0, 9000/785

64-bit support is not available on the following platforms, due to limitations
imposed by their respective operating systems:

• SGI

• Linux

• HPUX 10.20, 9000/735

• HPUX 11.0, 9000/780

On the IBM-AIX platform, 64-bit file I/O is supported for reading only. You can
write only up to 2 GB.

MATLAB Audio Enhancements

New audiodevinfo Function. On Windows 32-bit machines, audiodevinfo returns
information about installed audio devices.

UNIX Platform Support for audiorecorder and audioplayer. audioplayer and
audiorecorder are now available on UNIX platforms running Java Runtime
Environment 1.3 or higher.

Enhancements to audiorecorder and audioplayer. audioplayer and audiorecorder
can now take the audio device ID as input. You can obtain the device ID from
audiodevinfo.

audioplayer can now take an audiorecorder as an input.
7-29

7 MATLAB 6.5 Release Notes

7-3
Support for 24-bit Recording and Playback. On 32-bit Windows machines with an
installed 24-bit audio device, audiorecorder and audioplayer now support
24-bit recording and playback, respectively.

Improvement to wavread and wavwrite. wavread and wavwrite now support
reading and writing 24- and 32-bit .wav files.

Workspace Browser Support. Right-clicking on an audio object in the Workspace
Browser now displays a context menu with player/recorder controls.

New MATLAB Timer Object
MATLAB includes a timer object that you can use to schedule the execution of
MATLAB commands. To use a timer, you must perform these steps:

1 Create a timer object by calling the timer function.

2 Specify which MATLAB commands you want executed and when you want
them executed by setting timer object properties. (You can also set timer
object properties when you create them, in Step 1.)

3 Start the timer by calling the start or startat functions.

Programming Tips Documentation
A number of questions come up repeatedly in our external customer newsgroup
and our technical support Web site. Some of these questions arise when
MATLAB users are unable to find the information they are looking for in the
documentation. The “MATLAB Programming Tips” documentation is a new
feature in MATLAB 6.5, designed to make it easier to find help on a wide range
of topics. Many of the questions addressed by the tips documentation were
taken from discussions in the MathWorks newsgroup and from the technical
support site.

“MATLAB Programming Tips” is a chapter in the MATLAB “Programming and
Data Types” documentation. It is a categorized compilation of tips, covering
topics such as Debugging, Input/Output, Managing Memory, Optimizing for
Speed, etc. Each item is relatively brief to help you to browse through them and
find information that will be useful. Many of the tips include a link into the
MATLAB documentation to give you more complete coverage of the topic.
0

New Features
Graphics Features
MATLAB 6.5 adds the following graphics features and enhancements.

New Text Properties – Control Text Background
Text objects have the following new properties.

Colormap Editor – Modify Colormaps Interactively
The colormap editor is a tool that enables you to modify the colormap of the
current figure. See the colormapeditor function description for more
information and an example.

Redesigned Property Editor
The Handle Graphics® Property Editor and associated help have been
redesigned.

Selecting a Printer From the MATLAB Command Line
In earlier versions of MATLAB, you could select a nondefault printer for
graphics from the MATLAB command line on UNIX systems only. In MATLAB
6.5, you can do this on Windows systems as well. Specify the printer using the
-P switch in the print command.

For example, to print Figure No. 3 to a printer called Calliope, type

print -f3 -PCalliope

Property Purpose

BackgroundColor Color of text extent rectangle

EdgeColor Color of the rectangle edge

LineStyle Style of the rectangle edge line

LineWidth Width of the rectangle edge line

Margin Increase the size of the rectangle by adding a
margin to the text extent
7-31

7 MATLAB 6.5 Release Notes

7-3
If the printer name has spaces in it, put quotes around the -P option, as shown
here.

print -f3 '-Pmy local printer'

Using a Network Print Server
On Windows NT, Windows 2000, and Windows XP systems, you can print to a
network print server using the form shown here for a printer named trinity.

print -P\\PRINTERS\trinity

External Interfaces/API Features
MATLAB 6.5 adds the following external interface and API features and
enhancements:

• “New MX and MEX Functions” on page 7-32

• “New COM Client Support Features” on page 7-34

New MX and MEX Functions
There are a number of new logical mx functions provided as part of changing
logical from an attribute to a MATLAB class, several additional mx functions,
and two new mex error handling functions.

New Logical Functions. This release introduces seven new C mx functions to use
with logicals.

Function Description

mxCreateLogicalArray Create N-dimensional, logical
mxArray initialized to false

mxCreateLogicalMatrix Create two-dimensional, logical
mxArray initialized to false

mxCreateLogicalScalar Create scalar, logical mxArray
initialized to false

mxCreateSparseLogicalMatrix Create unpopulated, two-dimensional,
sparse, logical mxArray
2

New Features
Obsolete Logical Functions. The following two functions are now obsolete. Support
for these functions will be removed in a future release.

New mx Functions in C API. MATLAB 6.5 also introduces these new C mx
functions.

Note mxCreateDoubleScalar replaces mxCreateScalarDouble, although the
latter function is still supported at this time.

New mex Functions for Error Handling. There are two new C and Fortran MEX
functions that enable you to specify a message identifier and message string
when reporting an error or warning. These functions also accept formatting

mxGetLogicals Get pointer to logical array data

mxIsLogicalScalar True if scalar mxArray of class
mxLOGICAL

mxIsLogicalScalarTrue True if scalar mxArray of class
mxLOGICAL is true

Function Description

mxClearLogical Convert mxArray to numeric type

mxSetLogical Convert mxArray to logical type

Function Description

mxGetChars Get pointer to character array data

mxCreateDoubleScalar Create scalar, double-precision array
initialized to the specified value

Function Description (Continued)
7-33

7 MATLAB 6.5 Release Notes

7-3
conversion characters, such as those used with the MATLAB sprintf function,
in the error or warning message string.

New COM Client Support Features
In an effort to provide a consistent interface to object-oriented technologies,
MATLAB 6.5 introduces several changes that affect the way you interact with
Component Object Model (COM) controls and servers through MATLAB.

Key benefits of this change are

• Robust memory management — Objects and interfaces are destroyed
automatically when the variable that represents the object or interface is
either reassigned or goes out of scope.

• Flexibility in event handling — Register and unregister a control’s events
with callback or event handler routines at any time after the control has been
created.

• Custom properties — You can attach your own properties to a control and
store any kind of data in the control.

• A graphical user interface for viewing and modifying COM properties.

• Multiple arguments with the set function.

• More useful information on methods returned by invoke.

• More detail in error messages.

See “Client Support for COM” in the MATLAB documentation for more
information on these features. You may also want to read through the
“External Interfaces/API Upgrade Issues” on page 7-76 to find out how these
changes may affect your existing programs.

COM Demo. MATLAB includes three demos showing how to use the COM client
interface. To run any of the demos, click on the Demos tab in the MATLAB
Help Browser. Then click to expand the folder called Automation Client
Interface (COM).

Function Description

mexErrMsgIdAndTxt Issue error message with identifier and return
to MATLAB prompt

mexWarnMsgIdAndTxt Issue warning message with identifier
4

New Features
New MATLAB Functions for COM. There are a number of new functions available
for the COM interface.

MATLAB Functions New to COM. You can now use these MATLAB functions in the
COM environment.

Specifying Property Names. You may abbreviate the names of properties, as long
as you include enough letters in the name to make it unambiguous. Also,

Function Description

addproperty Add custom property to COM object

deleteproperty Remove custom property from COM object

eventlisteners Return a list of events attached to listeners

events Return a list of events that the control can trigger

isevent Determine if an item is an event of a COM control

ismethod Determine if an item is a method of a COM object

isprop Determine if an item is a property of a COM
object

registerevent Register an event handler with a control’s event

unregisterallevents Unregister all events for a control

unregisterevent Unregister an event handler with a control’s
event

Function Description

fieldnames Return property names of a COM object

inspect Display graphical interface to list and modify property
values

methods List all methods for the control or server

methodsview Display graphical interface to list method information
7-35

7 MATLAB 6.5 Release Notes

7-3
property names are not case-sensitive. For example, to get the value of the
OrganizationName property from a COM server running an Excel application,
you can use

get(h, 'org')
ans =
 The MathWorks, Inc.

Get and Set on Multiple Objects. You can use the get and set functions on more
than one object at a time by putting the object handles into a vector and then
operating on the vector. See “Get and Set on Multiple Objects” in the MATLAB
documentation.

Enumerated Values for COM Properties. When setting the value for a COM property
in MATLAB, you can now use an enumerated string in place of a numeric
value. An enumerated string, such as xlUnicodeText, is much easier to
remember than its equivalent numeric value, and thus makes it unnecessary
to spend time looking up valid settings for a property.

To list all possible enumerated values for a property of object h, use

set(handle, 'propertyname')

To set a property to the value represented by an enumerated string, use this
syntax. The enumstring argument can be abbreviated, as long as you use
enough letters to make it unambiguous:

set(handle, 'propertyname', 'enumstring')

To get the current enumerated value of a property, use

get(handle, 'propertyname')

See “Using Enumerated Values for Properties” in the MATLAB documentation
for more information.

Custom Properties. You can attach your own properties to a control using the
addproperty function. The syntax shown here creates a custom property for
control, h:

addproperty(handle, 'propertyname')

This example creates the mwsamp control, adds a new property called Position
to it, and assigns the value [200 120] to that property:
6

New Features
h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);
addproperty(h, 'Position');
set(h, 'Position', [200 120]);

To remove custom properties from a control, use deleteproperty with the
following syntax:

deleteproperty(h, 'propertyname')

See “Custom Properties” in the MATLAB documentation for more information.

New Event Handling Functions. With earlier versions of MATLAB, you could
register events for a control only at the time the control was created. In
MATLAB 6.5, you can register and unregister events at any time using the
registerevent, unregisterevent, and unregisterallevents functions.

You can also list all events that a control can respond to, or just those events
that are currently registered, using the events and eventlisteners functions,
respectively. The events function supersedes the COM send function.

See “COM Control Events” in the MATLAB documentation for more
information on event handling.

GUI Interface to Get and Set Properties. Use the new inspect function to see a list of
all properties belonging to a COM object or interface. Create an Excel server
object and invoke inspect to bring up the Property Inspector window shown
below:

h = actxserver('excel.application');
inspect(h)
7-37

7 MATLAB 6.5 Release Notes

7-3
To change the value of one of the properties, click on the property name at the
left and then type in the new value in the field at the right.

See “Using the Property Inspector” in the MATLAB documentation.

set Accepts Multiple Arguments. You can now set more than one property value
with one set command. The syntax is

set(h, property1, newvalue1, property2, newvalue2, ...);

Each property argument must be followed by a newvalue argument. The
example shown here changes the Label and Radius for an mwsamp control:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
get(h)
ans =
 Label: 'Label'
 Radius: 20

set(h, 'label', 'Hello', 'radius', 35);
8

New Features
get(h)
ans =
 Label: 'Hello'
 Radius: 35

Returning More Than One Output Argument. A MATLAB client can now return more
than one output argument from COM server applications. If you know that a
server function supports multiple outputs, you can return any or all of those
outputs to the MATLAB client.

With previous versions of MATLAB, you could only get back a single return
value (shown here as ret) from a function call to the server, even for those
functions that could return more than one output value:

ret = functionname(in1, in2, ...);

In MATLAB 6.5, you can specify additional output arguments (shown here as
out1 out2 ...) in a function call, enabling the client access to all values
returned by the function:

[ret out1 out2 ...] = functionname(in1, in2, ...);

If there are multiple output arguments, the return value is always the first
argument on the left hand side (lhs).

MATLAB makes use of the pass by reference capabilities in COM to implement
this feature. Note that pass by reference is a COM feature. It is not available
in MATLAB at this time.

Argument Types Listed By Invoke. The invoke function now lists data types for
input and output arguments. The function m1 defined in an Interface Definition
Language (IDL) file is shown here:

m1([in,out] BSTR* strInOut, [out] short* shortOut, [in] long
longIn, [out,retval] double* doubleRet);

MATLAB 6.1 invoke lists the function as

m1 = double m1(Variant(Pointer), Variant(Pointer), Int)

while MATLAB 6.5 invoke lists it as

m1 = [double, string, int16] m1(handle, string, int32)
7-39

7 MATLAB 6.5 Release Notes

7-4
More Detail in Error Messages. MATLAB now returns more detailed information
when a COM error is generated. This includes the source and description of the
error, along with the location of help resources provided to assist in resolving
the error:

h = actxserver('excel.application');
Repeat(h)
??? Invoke Error, Dispatch Exception:
Source: Microsoft Excel
Description: Repeat method of Application class failed
Help File: D:\Applications\MSOffice\Office\1033\xlmain9.chm
Help Context ID: 0.

Creating Graphical User Interfaces (GUIDE) Features
MATLAB 6.5 adds the following features and enhancements to GUIDE:

• New structure for the generated M-file makes it easier to understand and
program

• New GUIDE Quick Start dialog and GUI templates. When you first open
GUIDE, the GUIDE Quick Start dialog box provides access to new GUI
templates—simple examples of GUIs that you can modify for your own
purposes.

• Tab Order Editor enables you to change the order in which GUI components
are selected when a user clicks the Tab button.

• Changes to component tags automatically update callbacks and M-file code

• Export option in the File menu enables you to export a GUI to a single M-file
that does not require a FIG-file.

• MATLAB Editor icon on the toolbar provides easier access to the editor.

Changes to the M-file Generated by GUIDE
The associated M-file generated by GUIDE has the following differences for
Release 13:

• Most of the GUI initialization is performed in a separate function, which you
do not need to edit.

• The GUI M-file contains an opening function, where you can add code to
create data or perform other tasks before the GUI becomes visible to the
user.
0

New Features
• The GUI M-file contains an output function for returning variables to the
command line.

• A new calling syntax simplifies passing user defined arguments to the GUI
M-file.

• You can pass figure property name/value pairs as arguments when creating
the GUI.

• Generated callback function stubs no longer include a varargin argument.
If you want to add more arguments to a callback subfunction, you must add
the arguments to the function definition.

The following sections describe changes to the associated M-file in greater
detail.

New Calling Syntax for GUI M-File. You can call the GUI M-file with the following
syntax:

my_gui
my_gui('PropertyName', PropertyValue,...)
my_gui(UserArgs,...)
my_gui('PropertyName',PropertyValue,...,UserArgs,...)

• my_gui without arguments starts the GUI.

• Calling my_gui('Property', Value,...), where 'Property' is a valid
figure property, creates a new my_gui using the given property value pairs.

• Calling my_gui('My_function', hObject, eventdata, handles) calls the
subfunction my_function in the GUI M-file with the given input arguments.

Opening Function Code. The generated GUI M-file now includes a subfunction for
any initialization code you want to execute. If you call the GUI with input
arguments, they are passed to the opening function. The GUI M-file calls the
opening function with the following arguments:

function myGUI_OpeningFcn(hObject, eventdata, handles, varargin)

• hObject—handle to figure

• eventdata—to be defined in a future version of MATLAB

• handles—structure with handles and user data (see guidata)

• varargin— command line arguments to my_gui (see varargin)
7-41

7 MATLAB 6.5 Release Notes

7-4
Output Function Code. The GUI M-file now includes a subfunction for passing
output arguments to the command line. The GUI M-file calls the output
function with the following arguments:

function varargout = myGUI_OutputFcn(hObject, eventdata, handles)

• hObject—handle to figure

• eventdata—to be defined in a future version of MATLAB

• handles—structure with handles and user data (see guidata)

• varargin—unrecognized property name/value pairs from the command line

GUIDE Quick Start Dialog and Templates
GUIDE now provides four templates that make it easier to construct GUIs. The
templates are simple examples of GUIs that you can modify for your purposes.
You can access the templates from the new GUIDE Quick Start dialog that
appears when you open GUIDE, or when you select New from the file menu. It
is often easier to build a GUI from an existing template rather than starting
with a blank GUI.

openfig Accepts Property Name/Value Pair—Returns User Args
The openfig function enables you to specify figure property name/value pairs
that are applied to the figure before it is displayed. See the openfig reference
page for more information.

uiputfile and uigetfile Return Filter Index
The uigetfile and uiputfile functions can now optionally return an index
value that enables you to determine which filter was selected by the user. See
the uigetfile and uiputfile reference pages for more information.

uigetdir
The new uigetdir function displays a dialog box in which the user can select a
directory, and returns the directory name as a string.
2

Major Bug Fixes
7Major Bug Fixes
MATLAB 6.5 includes several bug fixes made since the last MATLAB release.
This section describes the particularly important Version 6.5 bug fixes.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 12.1, then you should
also see “Major Bug Fixes” on page 8-18 in the MATLAB 6.1 Release Notes.
7-43

7 MATLAB 6.5 Release Notes

7-4
Platform Limitations
The MATLAB functionality described in these Release Notes and in the
MATLAB documentation applies to MATLAB 6.5, with the exception of the
limitations listed below for the HP and IBM platform.

This discussion of new MATLAB platform limitations is organized into the
following categories:

• “Patch Required for HP-UX 11.0” on page 7-44

• “Development Environment Limitations” on page 7-44

• “Mathematics Limitations” on page 7-46

• “Graphics Limitations” on page 7-47

• “Creating Graphical User Interfaces (GUIDE) Limitations” on page 7-47

Another platform limitation involves the use BLAS on certain processors. See
“You May Need to Overwrite the MATLAB Default Choice of BLAS” on
page 7-47 for details.

Patch Required for HP-UX 11.0
To run MATLAB on HP-UX 11.0, you must install a patch available from
Hewlett-Packard. To get the patch, go to www.itrc.hp.com, the IT Resource
Center page. The patch is available to registered customers from the individual
patches link. The patch name is below.

PHSS_21959 1.0 X/Motif 32 bit
Runtime 2000 Periodic Patch

Development Environment Limitations
The MATLAB 6.5 development environment features have the platform
limitations described below. These include limitations that have existed since
MATLAB 6.0.
4

Platform Limitations
The MATLAB desktop and most of the development environment tools are not
available on the HP-UX and IBM platform. Following are the specific
limitations for each tool and available alternatives.

Feature Limitation and Alternatives

Desktop Not supported. Instead, the MATLAB prompt appears in an
X window. Use function alternatives for various tools.

Array
Editor

Not supported. Instead, view and edit variables at the
command line.

Command
History

Not supported. To recall previous lines, use the up arrow
key, or use the diary function or the logfile startup
option.

Current
Directory
browser

Not supported. Use function alternatives documented for
the Current Directory browser, including cd, delete, ls,
and mkdir.

Demos Demos for non-Java platforms run the way they did in
Release 12.1. You do not access them from the Help
browser, but rather by using the demo function.

Editor/
Debugger

Not supported. For editing M-files, use the edit function,
and another text editor, such as Emacs—see the edit
reference page to specify the other text editor. To debug
M-files, use MATLAB debugging functions.

Help
browser

Not supported. Help displays in your default browser. The
Index and Search features are not available. You get a
broken link message from your browser if you try to access
documentation that you do not have installed.

HDF
Import Tool

Not supported. Use function alternatives documented in
Using the HDF Import Tool.

Import
Wizard

Not supported. Use import function equivalents for the
various features.
7-45

7 MATLAB 6.5 Release Notes

7-4
Mathematics Limitations
The MATLAB 6.5 mathematics features have the platform limitation described
below.

Basic Fitting Interface
The Basic Fitting interface is not supported. Instead, use curve fitting
functions such as polyfit and spline. See also “Data Analysis and Statistics”
in the MATLAB documentation for more information.

Launch Pad Not supported. Access documentation and demos using
functions, such as help and demo.

Preferences Not supported. Set location of help files using docopt.

Profiler The new desktop Profiler is not supported. The Version 6.1
profile and profreport functions are supported.

Set Path
dialog box

Not supported. Use the path, addpath, and rmpath
functions instead.

Source
Control
menu items

Not supported. Use the checkin, checkout, cmopts, and
undocheckout functions on UNIX platforms or the verctrl
function on PC platforms instead.

Workspace
browser

Not supported. Use who, whos, save, load, and clear
functions instead.

Feature Limitation and Alternatives (Continued)
6

Platform Limitations
Graphics Limitations
The MATLAB 6.5 graphics features have the platform limitations described
below.

Creating Graphical User Interfaces (GUIDE)
Limitations
The MATLAB 6.5 GUIDE-related features have the platform limitations
described below.

GUIDE is not supported on the following platforms:

• IBM_RS

• HPUX

• HP700

You May Need to Overwrite the MATLAB Default
Choice of BLAS
On the PC, under both Linux and Windows operating systems, MATLAB
determines at startup time what processor your computer has, for example
Genuine Intel Pentium II, Pentium III, or AMD Athlon. MATLAB then
automatically selects the most appropriate BLAS for your processor. The same
is true on the SUN, where MATLAB distinguishes between UltraSPARCs and
non-Ultra machines.

Feature Limitation and Alternatives

Data
Statistics

Not supported.

Printing Uses the Release 11 Page Setup, Print Setup, and Print
dialog boxes. For information about these interfaces, see
“Printing MATLAB Graphics” in the online MATLAB
documentation.

Property
Editor

Not supported. Similar graphical user interfaces provide
access to figure, line and text objects. Use the set and get
functions to modify Handle Graphics object properties.
7-47

7 MATLAB 6.5 Release Notes

7-4
However, on the remaining platforms you get the default BLAS, which is
usually targeted for a reasonably modern or common processor:

• ALPHA 21264

• HP700 PA-RISC1.1

• HPUX PA-RISC2.0

• IBM_RS Power3

• SGI R12000

If you have reason to believe that your processor is closer to another of the
flavors of BLAS distributed with MATLAB, for example 21164 on the ALPHA
or PA-RISC2.0 on the HP700, you might want to override the default choice of
BLAS. Look in your <MATLAB>/bin/$ARCH directory for libraries beginning with
atlas_ to see your options.

Overriding the Default
The way to override the default choice is to set the environment variable
BLAS_VERSION before invoking MATLAB. For example (in csh):

setenv BLAS_VERSION atlas_21164.so
setenv LAPACK_VERBOSITY 1
matlab

The environment variable LAPACK_VERBOSITY simply confirms that your choice
of BLAS is being loaded once you start up MATLAB.

Restoring the Default
If you would like to return to using the default provided by MATLAB, you may
use the command (in csh)

unsetenv BLAS_VERSION
8

Upgrading from an Earlier Release
Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from MATLAB
6.1 to Version 6.5. This discussion of new MATLAB upgrade issues is organized
into the following categories:

• “Development Environment Upgrade Issues” on page 7-49

• “Mathematics Upgrade Issues” on page 7-51

• “Programming and Data Types Upgrade Issues” on page 7-52

• “Graphics Upgrade Issues” on page 7-75

• “External Interfaces/API Upgrade Issues” on page 7-76

• “Creating Graphical User Interfaces (GUIDE) Upgrade Issues” on page 7-85

If you are upgrading from a release earlier than Release 12.1, then you should
see “Upgrading from an Earlier Release” on page 8-23 in the MATLAB 6.1
Release Notes.

Development Environment Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of development environment features, are discussed below.

Toolbox Path Caching Now On By Default
Toolbox path caching is now on by default—see “Startup” on page 7-3.

Release 13 Prerelease users might not see the toolbox path caching option on
by default. To turn it on, select File -> Preferences -> General, set the Enable
toolbox path cache check box, and click OK. The next time you start
MATLAB, it will create the cache file, and startups after that will be faster.

Changes to ver Function
The ver function header now displays more detailed operating system output
and the version, if any, of the Java Virtual Machine MATLAB uses. The hostid
is no longer in the ver header.

The ver header displays when you run ver with an argument, for example,
ver('simulink'). The header is not displayed when ver returns the results to
a structure, for example, simver = ver('simulink').
7-49

7 MATLAB 6.5 Release Notes

7-5
The ver output no longer includes a date column. The output is now ordered
with MATLAB first, Simulink second, if installed, and then all other installed
products in alphabetical order.

Migration of Files Used by Desktop Tools
Most files associated with desktop tools are maintained when you upgrade
from Release 12.1 to Release 13. Specifically, preferences, the Command
History, Help favorites, and current directory entries in the desktop toolbar
and Current Directory browser lists are maintained. However, there may be
some invalid current directory and favorites entries if the locations of Release
13 files are different from the locations of Release 12 files.

pathdef.m. If you want Release 13 to use your existing pathdef.m file, save it to
another location outside of $matlabroot before installing Release 13, and then
after installing, copy it back.

Editor/Debugger

Cannot Save in Debug Mode. You cannot save changes to an M-file while in debug
mode. First quit debug mode and then save the file.

Subfunctions Listed Alphabetically. When you click the function button on the
toolbar, the subfunctions are listed alphabetically. Previously they were listed
in the order that they appeared in the M-file.

Use Delete Instead of Clear. The Edit -> Clear menu item was removed. Use Edit
-> Delete instead.

Discontinued Form of edit. The edit function no longer supports the forms
edit fun1 in fun2 or edit fun(a, b, c).

Running Playshow Demos from the Command Line
To run playshow demos from the command line, you now need to type playshow
followed by the demo name. In previous releases, you only needed to type the
playshow demo name to run it.

For example, if you type quake, the demo does not run. View the H1 line for
quake.m, that is, the first comment line. It begins with two comment symbols
(%%), indicating that quake is a playshow demo. Therefore, type
playshow quake to run the demo.
0

Upgrading from an Earlier Release
Mathematics Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of mathematics features, are discussed below.

Singular Triangular Matrix Division
The result of dividing a singular lower or upper triangular matrix by any other
matrix, using either left (\) or right (/) division may change. Previously, for
singular square matrices A for which rcond(A) = 0, the result was always a
matrix of Infs.

This change is a result of performance improvements described in
“Mathematics Features” on page 7-15.

Example 1.

In MATLAB Version 6.5,

A = [1 2 3;0 4 5;0 0 0];
b = [1;2;3];
A\b
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 0.000000e+000.

ans =
NaN

 -Inf
 Inf

Previously, the result was

[Inf
Inf
Inf]
7-51

7 MATLAB 6.5 Release Notes

7-5
Example 2.

In MATLAB 6.5, a zero matrix is treated as a singular triangular matrix.

[0 0;0 0] \ [0 0]'
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 0.000000e+000.

ans =
NaN
NaN

Previously the result was

[Inf
Inf]

Programming and Data Types Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of programming and data types features, are discussed below. MATLAB 6.5
introduces important changes to the inner structure of MATLAB that may
affect existing programs. These changes are

• “Maximum Name Length Changed for Variables, Functions, Files” on
page 7-53

• “The logical Attribute Is Now a Class” on page 7-55

• “Changes to Definition of “Truth”” on page 7-59

• “The sparse Class Is Now an Attribute” on page 7-61

• “Logical Indexing and find” on page 7-65

• “Warning Control Upgrade Issues” on page 7-65

• “Formatted Error and Warning Strings” on page 7-68

• “getfield and setfield Superseded” on page 7-68

• “New Behavior in break” on page 7-68

• “isequal and Structure Field Creation Order” on page 7-68

• “Set Operations on Cell Arrays of Strings” on page 7-68

• “Using mat2cell on an Empty Array” on page 7-69

• “Concatenating with Empty Arrays” on page 7-69

• “Function Names Redefined As Variable Names” on page 7-70
2

Upgrading from an Earlier Release
• “Specifying More Outputs Than a Function Defines” on page 7-71

• “Consistent Handling of Subscripting Errors” on page 7-72

• “Consistent Handling of Logical Errors” on page 7-72

• “Operations That Are Now Considered Invalid” on page 7-73

Maximum Name Length Changed for Variables, Functions, Files
Prior to this release, the length of MATLAB identifiers (variable names,
function and subfunction names, structure fieldnames, M-file names, MEX-file
names, and MDL-file names) was restricted to 31 characters. Names using
more than 31 characters were either truncated by MATLAB or caused a
warning or error to be generated.

In MATLAB 6.5, any of these names can be up to 63 characters long.

A new function, namelengthmax, returns the maximum length for MATLAB
identifiers.

namelengthmax
ans =
 63

If you have MATLAB programs that hard-code the maximum identifier length
as 31, you should replace these hard-coded limits with a call to namelengthmax.

If you use identifiers that exceed 63 characters, MATLAB issues a warning and
truncates any characters beyond the 63rd.

Characters Beyond 31 Are No Longer Ignored. In previous versions of MATLAB, if
you had two or more long identifiers in which the first 31 characters were
identical, MATLAB ignored any characters beyond the thirty first and thus
recognized only one of the identifiers. For example, these two Stateflow
filenames

stateflow_modelname_with_40_characters_1.mdl
stateflow_modelname_with_40_characters_2.mdl

both appeared to MATLAB 6.1 as shown below, and MATLAB recognized only
one of the files:

stateflow_modelname_with_40_cha.mdl
7-53

7 MATLAB 6.5 Release Notes

7-5
In MATLAB 6.5, with the maximum MDL-file name length increased to 63,
MATLAB recognizes both files. You should be aware of this change, as it could
possibly lead to unexpected behavior.

Warning for Identifiers Longer Than 31. In MATLAB 6.5, if you use an identifier
that exceeds the previous limit of 31 characters, MATLAB can optionally
generate a warning of the form:

<identifier> exceeds MATLAB's previous maximum name length limit
of 31 characters.

This warning is disabled by default. You can enable it by typing

warning on MATLAB:usinglongnames

Note Unlike most MATLAB warnings, you cannot enable this warning with
the commands, warning on or warning on all. You must use the command
shown above.

Warning for Identifiers Longer Than namelengthmax. If you specify an identifier that
exceeds the new character limit, MATLAB generates the following warning:

<identifier> exceeds MATLAB's maximum name length of
<namelengthmax> characters and has been truncated to
<truncated_identifier>

This warning is enabled by default. You can disable it by typing the following
command. However, we strongly encourage you to leave it enabled:

warning off MATLAB:namelengthmaxexceeded

MATLAB Toolbox Functions Updated. MATLAB toolbox functions, such as
isvarname, have been updated in MATLAB 6.5 to make use of the
namelengthmax function, and thus return the correct values.

Effect On P-Code and MEX-files. You should recompile the following files:

• Any P-Code files that contain identifiers longer than 31 characters.

• Any MEX-files that use the constant, mxMAXNAME.
4

Upgrading from an Earlier Release
The logical Attribute Is Now a Class
In previous versions of MATLAB, logical was an attribute of any numeric
data type. This is illustrated in the following example (executed in MATLAB
6.1), where b = a > 10 produces a double array with a logical attribute:

a = magic(4);
b = a > 10;

whos b
 Name Size Bytes Class

 b 4x4 128 double array (logical)

Grand total is 16 elements using 128 bytes

In MATLAB 6.5, logical is a first class data type and MATLAB class. The
class hierarchy diagram below shows logical to be a class, equivalent to other
first class types like character and cell arrays.

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64,uint64

user classes java classes

function
handle

single

[full or sparse]

logical
7-55

7 MATLAB 6.5 Release Notes

7-5
The same example, executed in MATLAB 6.5, produces a result of class
logical array:

a = magic(4);
b = a > 10;

whos b
 Name Size Bytes Class

 b 4x4 16 logical array

Grand total is 16 elements using 16 bytes

Note Logical arrays in MATLAB 6.5 also require less storage space. In the
example above, it took 128 bytes to store the array in MATLAB 6.1, and only
16 bytes in Version 6.5.

Effect on Related Functions. The table below compares the results obtained from a
number of functions that operate on logical types. The variable a in the table
is derived as follows:

a = (magic(4) > 10);

Command MATLAB 6.1 Result MATLAB 6.5 Result

whos a double array (logical) logical array

class(a) double logical

islogical(a) 1 1

isnumeric(a) 1 0

isa(a,'double') 1 0

isa(a,'logical') 0 1

double(a) double array (logical) double array
6

Upgrading from an Earlier Release
Valid logical Values. logicals can only have the values 0 and 1. When you
convert real finite values other than 0 or 1 to logical, MATLAB gives them a
logical 1 value and issues a warning message:

x = logical(5)
Warning: Values other than 0 or 1 converted to logical 1
x =
 1

Behavior of islogical is Unchanged. Note in the table above that islogical
continues to return 1 for a logical array, as it did in previous releases for
arrays with a logical attribute.

Array Manipulation. All generic array manipulation functions (e.g., subscripting,
reference, assignment, concatenation, size, length, numel, ndims, permute,
diag, etc.) work as they do in MATLAB 6.0, subject to the behaviors described
in this section.

Boolean Functions. All Boolean functions (e.g., and, or, not, xor, any, all) work
as they do in MATLAB 6.0, subject to the behaviors described in this section.

MAT-Files. MAT-files created with earlier versions of MATLAB that contain
logical arrays will load correctly in MATLAB 6.5. Values other than 0 or 1 will
be converted to 1’s. A double array with a logical attribute, when loaded in
MATLAB 6.5, will be a logical array.

Mixed-Mode Arithmetic. Mixed-mode arithmetic (e.g., arithmetic involving a
logical and a double) dispatches to the function registered for the nonlogical
data type. The logical is converted to that type and the operation proceeds.
This behavior is fully backward compatible with how MATLAB works in
MATLAB 6.0.
7-57

7 MATLAB 6.5 Release Notes

7-5
Converting logical to double. You can use the double function to convert a logical
array to a double array:

b = magic(4) > 10;
whos b
 Name Size Bytes Class

 b 4x4 16 logical array

Grand total is 16 elements using 16 bytes

b = double(b);
whos b
 Name Size Bytes Class

 b 4x4 128 double array

Grand total is 16 elements using 128 bytes

Indexed Assignment. As a rule, MATLAB data types are preserved on indexed
assignment. This now holds true for logical, as it is now a MATLAB data type.

This example creates an empty array of type logical. The indexed assignment
to double that follows, (a(1) = 1), does not change the type to double. Its
logical type is preserved:

a = logical([]);
whos a
 Name Size Bytes Class

 a 0x0 0 logical array

Grand total is 0 elements using 0 bytes

a(1) = 1;
whos a
 Name Size Bytes Class

 a 1x1 1 logical array

Grand total is 1 element using 1 bytes
8

Upgrading from an Earlier Release
Passing NaN or Complex to logical Functions. Attempting to pass NaN or complex
values to an if or while statement, or to and, or, not, or logical, now
consistently generates an error:

logical(NaN)
??? Error using ==> logical
NaN's cannot be converted to logicals.

not(2j)
??? Error using ==> not
Operands to NOT must not be complex.

Creating Logical Matrices with the sparse Function. Previously, when creating sparse
logical matrices, the sparse function accumulated entries when it encountered
repeated indices. For example,

A = sparse([1 1 1], 1, logical([1 0 1]))
A =
 (1,1) 2

In MATLAB 6.5, sparse now returns an error, because the only valid logical
values are 0 and 1:

A = sparse([1 1 1], 1, logical([1 0 1]))
??? Error using ==> sparse
Repeated indices are not supported for sparse logical matrices.

Changes to Definition of “Truth”
As MATLAB has evolved, its definition of truth has become complicated and
inconsistent. One goal of MATLAB 6.5 is to present a simple and self-consistent
definition of truth that applies in all situations.

This change affects the following types of operations.

Comparing Empty with Empty or Scalar. MATLAB now returns an empty array ([])
when you compare two 0-by-0 empty arrays, or a 0-by-0 empty array with a
scalar. This behavior also affects comparisons performed inside if and while
statements.
7-59

7 MATLAB 6.5 Release Notes

7-6
Comparing two 0-by-0 empty arrays:

a = [];

b = (a == [])
b =
 []

Comparing a 0-by-0 empty array with a scalar:

b = (a == 5)
b =
 []

This behavior is now consistent with all other binary operators (e.g., >, <, ~=, +,
-, .*, etc.).

Comparing Empty with Nonscalar. MATLAB now returns a dimension mismatch
error when you compare a 0-by-0 empty array with a sized array:

a = [];

a == [1 2 3]
??? Error using ==> ==
Matrix dimensions must agree.

Using NaN with any or all. The any and all functions now ignore NaN. Thus any
now returns 0 for a vector having NaNs as its only nonzero elements. The behavior of
all is unaffected by this change, but it means that any and all now behave
consistently with other reduction operators like min and max:

a = [0 0 NaN 0 NaN];
any(a)
ans =
 0

Interaction with Objects. In previous versions of MATLAB, passing a user-defined
object as the argument to if or while caused the interpreter to call the object’s
double method (assuming it had one) in order to convert it to something whose
truth could be determined. MATLAB 6.5 handles this situation by looking first
for a logical method for the object and, upon failing to find one, calls its
double method, if one exists.
0

Upgrading from an Earlier Release
If you have objects that will participate in truth evaluation, you should provide
a logical method for those objects. The logical method must return 0 or 1
(false or true).

The sparse Class Is Now an Attribute
In previous versions of MATLAB, sparse was a first class data type and
MATLAB class (subclass of double). This is illustrated in the following
example (executed in MATLAB 6.1), where sparse(eye(3)) produces a sparse
array:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 sparse array

Grand total is 3 elements using 52 bytes

In MATLAB 6.5, sparse becomes an attribute of a MATLAB class. The class
hierarchy diagram below represents the MathWorks long-range plan for
sparse, where full and sparse are attributes of all MATLAB classes.

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64,uint64

user classes java classes

function
handle

single

[full or sparse]

logical
7-61

7 MATLAB 6.5 Release Notes

7-6
Note In MATLAB 6.5, the sparse attribute is supported for the double and
logical classes only.

The same example, executed in MATLAB 6.5, produces a double array with a
sparse attribute:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes

Effect on Related Functions. The table below compares the results obtained from a
number of functions that operate on sparse arrays. The variable a in the table
is derived as follows:

a = sparse(eye(3));

Command MATLAB 6.1 Result MATLAB 6.5 Result

whos a sparse array double array (sparse)

class(a) sparse double

issparse(a) 1 1

isa(a,'sparse') 1 0

isa(a,'double') 1 1

double(a) double array double array (sparse)

full(a) double array double array

x = logical(a) sparse array (logical) logical array (sparse)

class(x) sparse logical

full(x) double array (logical) logical array
2

Upgrading from an Earlier Release
Note issparse(a) and isa(a,'sparse') give different results. The former
indicates that a is a sparse matrix; the latter that a is not of the sparse class.

Behavior of issparse is Unchanged. Note in the table above that issparse continues
to return 1 for arrays with a sparse attribute, as it did in previous releases for
sparse arrays.

Arithmetic Operations. Arithmetic operations continue to work on sparse doubles
as they do today.

Determining Storage Type. Make sure that your programs do not use class or isa
to determine if a matrix uses sparse storage. Use issparse instead. It is both
simpler and faster.

Methods in @sparse Directories. If you have written your own algorithms for
dealing with sparse matrices and placed them in an @sparse directory,
MATLAB will not access them because sparse is no longer a class.

MAT-Files. MAT-files created with earlier versions of MATLAB that contain
sparse arrays will load correctly in MATLAB 6.5. A sparse array, when loaded
in MATLAB 6.5, will be a double array with a sparse attribute, or a logical
array with a sparse attribute if the array originally had the logical attribute.
(See “The logical Attribute Is Now a Class” on page 7-55 for information on
changes to logical).

Converting to Full. Use full(x) instead of double(x) to ensure that variable x is
full. The double function no longer removes the sparseness of an array:

s = sparse(eye(3));
s = double(s);
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes
7-63

7 MATLAB 6.5 Release Notes

7-6
Use full instead to make the array full:

s = full(s);
whos s
 Name Size Bytes Class

 s 3x3 72 double array

Grand total is 9 elements using 72 bytes

Testing for full arrays. You should no longer use the following statement to test
whether an array is full (nonsparse). Because the sparse class has been
removed in MATLAB 6.5, this statement now returns 1 for both full and sparse
arrays:

strcmp(class(s), 'double') == 1

In place of the above statement, use the following to test for a full array:

~issparse(s)

For example, create a sparse array, s, and test to see if it is a full array:

s = sparse(eye(3));

~issparse(s)
ans =
 0

Indexed Assignment. As a rule, MATLAB data attributes are not preserved on
indexed assignment. This now holds true for sparse, as it is now an attribute.

This example creates a sparse double array. The indexed assignment to a full
double that follows, (s(:) = rand(3)), removes the sparse attribute from the
array:

s = sparse(eye(3));
whos s
 Name Size Bytes Class

 s 3x3 52 double array (sparse)

Grand total is 3 elements using 52 bytes
4

Upgrading from an Earlier Release
s(:) = rand(3);
whos s
 Name Size Bytes Class

 a 3x3 72 double array

Grand total is 9 elements using 72 bytes

Logical Indexing and find
The following two statements are intended to be equivalent in MATLAB.
However, prior to this release, the statements were not equivalent in the case
where a is nondouble and b contains only zeros:

a(find(b))
a(logical(b))

This has been fixed in this release. For the a and b shown here, the three
equations that follow return the same result:

a = [int8(1) int8(2) int8(3)];
b = a > 5;

r1 = a(find(a > 5));
r2 = a(b);
r3 = a(a > 5);

As a result of this fix, you can now use either of the last two, simpler forms in
place of the form that requires the use of find.

Warning Control Upgrade Issues
See the section on “Warning Control Features” on page 7-25 in these Release
Notes for information on how you can control the way MATLAB handles the
selected warnings in your programs.

Changes to Functionality. In some case, these changes to warning control will
affect warning statements that currently exist in your code. The following two
tables present how Versions 6.0 and 6.5 of MATLAB respond to MATLAB 6.0
warning syntax.
7-65

7 MATLAB 6.5 Release Notes

7-6
This table shows the MATLAB 6.0 behavior.

For backward compatibility, MATLAB will continue to accept every usage of
warning shown in the left column of the table above. However, some changes
will be made to their actual behavior, as shown in the table below.

MATLAB 6.0 Syntax MATLAB 6.0 Behavior

warning backtrace warning on all; Enable backtraces.

warning backtrace off warning on all; Disable backtraces.

warning backtrace on warning on all; Enable backtraces.

warning off backtrace warning on all; Disable backtraces.

warning on backtrace warning on all; Enable backtraces.

warning debug warning on all; dbstop if warning

warning debug off warning on all; dbclear if warning

warning debug on warning on all; dbstop if warning

warning off debug warning on all; dbclear if warning

warning on debug warning on all; dbstop if warning

warning once warning once ...
<each-HG-back-compat-message-identifier>

warning always warning always ...
<each-HG-back-compat-message-identifier>

warning ans gets one of on, off, debug, or backtrace.

s = warning(...) s gets one of on, off, debug, or backtrace.
Process inputs (if any) as above.

[s, f] = warning(...) s gets one of on, off, debug, or backtrace.
f gets one of once or always. Process inputs
(if any) as above.
6

Upgrading from an Earlier Release
This table shows the MATLAB 6.5 behavior in response to MATLAB 6.0
warning command syntax.

Outputs Returned by Warning. Prior to MATLAB 6.5, warning returned up to two
outputs: state and frequency. Neither of these is meaningful anymore, as
there is no longer neither a single warning state nor a single warning frequency
to return.

MATLAB 6.0 Syntax MATLAB 6.5 Behavior

warning backtrace Enable backtraces.

warning backtrace off Disable backtraces.

warning backtrace on Enable backtraces.

warning off backtrace Disable backtraces.

warning on backtrace Enable backtraces.

warning debug dbstop if warning

warning debug off dbclear if warning

warning debug on dbstop if warning

warning off debug dbclear if warning

warning on debug dbstop if warning

warning once Warning - warning frequency is no longer
supported.

warning always Warning - warning frequency is no longer
supported.

warning warning query all; (doesn’t assign to ans).

s = warning(...) s = warning('query', 'all');
then process inputs (if any) as above.

[s, f] = warning(...) Warning - warning frequency is no longer
supported.
7-67

7 MATLAB 6.5 Release Notes

7-6
The frequency output is now disallowed. MATLAB generates a warning if you
request this output.

The warning function now returns a structure instead of a string for the state
output. Any existing code that uses this output should continue to function
normally, but should be examined to make sure that the state value is
properly interpreted in this new context.

Formatted Error and Warning Strings
For backward compatibility, if only one input is passed to error or warning,
MATLAB treats it as a fixed string, not a format string. See “Formatted String
Conversion” in Errors and Warnings in the MATLAB documentation.

getfield and setfield Superseded
Since dynamic field names improve on the getfield and setfield, these two
functions will eventually be removed from the MATLAB language. In
MATLAB 6.5, getfield and setfield will generate a warning message
encouraging you to use dynamic field names instead. See the section, “Dynamic
Field Names for Structures” on page 7-25 for more information on this.

New Behavior in break
The break function is intended to be used within a for or while loop. Use of
break outside of a loop results in a warning being issued.

isequal and Structure Field Creation Order
When comparing structures with isequal, MATLAB no longer considers the
order in which the fields of the structures were created in determining
equality. See Example 2 on the isequal reference page.

Set Operations on Cell Arrays of Strings
The intersect, setdiff, and setxor functions have been modified to handle
cell arrays of strings having one of more trailing spaces in a manner that is
8

Upgrading from an Earlier Release
consistent with its handling of other array types. These set functions no longer
ignore trailing spaces when doing the comparison. See the examples below:

Using mat2cell on an Empty Array
If you invoke mat2cell on an empty array, the function now returns an empty
cell array rather than issuing an error. This requires that all zero dimensions
of the empty input array have a corresponding mat2cell argument equal to [].

In the following example, the third input argument to mat2cell specifies how
MATLAB is to divide up the second dimension of the input array, X, in the
resultant cell array. (See the mat2cell reference page for help on syntax.)
Because the second dimension of X is of zero size, the only valid division
specifier is [].

X = rand(3, 0, 4);
C = mat2cell(X, [1 2], [], [2 1 1])
C =
 Empty cell array: 2-by-0-by-3

Concatenating with Empty Arrays
Empty arrays in concatenation operations can now affect the data type of the
output. The only time you are likely to see this is when concatenating doubles
and logicals. In previous versions of MATLAB, the example shown below
returned a double array with a logical attribute. Now it returns a double
because the empty double input is no longer ignored:

Prior to MATLAB 6.5 MATLAB 6.5

intersect({'A'}, {'A '})
ans =
 'A'

intersect({'A'}, {'A '})
ans =
 {}

setdiff({'A'}, {'A '})
ans =
 {}

setdiff({'A'}, {'A '})
ans =
 'A'

setxor({'A'}, {'A '})
ans =
 {}

setxor({'A'}, {'A '})
ans =
 'A' 'A '
7-69

7 MATLAB 6.5 Release Notes

7-7
a = [[] logical(0)];
whos a
 Name Size Bytes Class

 a 1x1 8 double array

Grand total is 1 element using 8 bytes

Concatenating Empty Cell Arrays. You cannot concatenate an empty cell array with
numeric or character values:

a = ['string' {}]
??? Error using ==> horzcat
Conversion to cell from char is not possible.

Function Names Redefined As Variable Names
Under the conditions listed below, if you define a variable using a name that
already belongs to a function, MATLAB issues the following warning message:

Variable <variable name> has been previously used as a function
name.
(Type "warning off MATLAB:mir_warning_variable_used_as_function"
to suppress this warning.)

This warning is issued only when all of the following conditions are true:

• The variable definition appears in an M-file function

• Within that M-file function, the name is used in a function call, and then
later used as a variable name

For example, the first line of the function shown below uses the term i to call
the MATLAB function that returns the complex constant. Some time later, in
the for loop, the function code redefines i so that MATLAB now interprets it
as a variable name, and assigns to the variable the values 1:10.

function myfun
x = 5 + i;
0

Upgrading from an Earlier Release
for i = 1:10
 <do something>
end

y = 32 + i;

When MATLAB compiles this M-file function, it issues the warning message
shown above. The reason for the warning is illustrated in the last line of the
code shown in the example. The statement 32 + i does not add the complex
constant i to 32 as intended, but instead adds the value 10 to 32. This is
because the opening for loop statement redefined the name i as a variable
name and the last value assigned to that variable was 10.

Note that this is a compile-time warning only. M-files run for the first time in
a MATLAB session, or run after being cleared from memory (e.g., by clear
functions) may issue this warning. M-files that are executed from cache do
not.

Specifying More Outputs Than a Function Defines
A function call that requests more output values than are generated by the
function being called now returns an error instead of a warning. Consider the
function below that declares two outputs in the function definition line and
assigns a value to one of them.

function [A, B] = mult_by_two(C)
A = 2 * C;

Calling this function with one output specified in the call completes
successfully. Calling the function with two outputs specified returns an error.
Even though two outputs are declared in the function definition line, only one
output is generated in the function body.

[A, B] = mult_by_two(5)
??? One or more output arguments not assigned during call to
'mult_by_two'.

In previous versions of MATLAB, this type of call resulted in a warning. As a
result, execution of the function continued and assignment to output variable
A completed successfully.

In MATLAB 6.5, this type of call generates an error and aborts execution of the
M-file. As a result, A remains undefined.
7-71

7 MATLAB 6.5 Release Notes

7-7
Consistent Handling of Subscripting Errors
The way in which MATLAB handles invalid subscripting is more consistent in
MATLAB 6.5. MATLAB now responds to all of the situations listed below with
this one error message:

??? Subscript indices must either be real positive integers or
 logicals.

The types of invalid subscripting that yield this error are shown in this table.

The only functional change is that subscripting with noninteger values is now
always treated as an error rather than a warning. In previous versions of
MATLAB, this was an error only for sparse matrices.

Consistent Handling of Logical Errors
MATLAB now responds to the following types of invalid logical expressions as
shown here:

• Bad arguments to logical (e.g., logical(2)):
 Warning: Logical was assigned values other than 0 or 1.

• Bad assignment to logicals (e.g., x = logical([1 0 1]); x(2) = 2):
 Warning: Logical was assigned values other than 0 or 1.

• Complex assignment to logical (e.g., logical(i)):
 Complex argument is not allowed in LOGICAL.

Type of Subscript Example

Complex x(2i)

Noninteger x(1.2)

Negative x(-5)

Zero x(0)

NaN x(NaN)

Inf x(Inf), x(-Inf)
2

Upgrading from an Earlier Release
• Using NaN in a logical expression (e.g., logical(NaN)):
 NaN's cannot be assigned to logical arrays.

• NaN in an expression with and, or, not (e.g., 5 & NaN):

 NaN's cannot be converted to logicals.

Note Logical values are 1 (for true) and 0 (for false). Other nonzero values
implicitly convert to true. Complex values and NaN cannot be converted
implicitly. Use ~=0 to convert these to logicals. For example, x = (NaN~=0).
to make x logical.

Empty Array in Comparisons. When you use an empty array in an equal or not
equal comparison statement, MATLAB now returns an empty array as the
result. In previous versions, MATLAB returned zero and displayed a warning.

For example, this statement now returns an empty array:

[] == 5
ans =
 []

The previous return value was a vestige of much older MATLAB behavior. The
new return value is now consistent with all other binary operations involving
empty arrays. For example, [] + 5 yields [].

Operations That Are Now Considered Invalid
The following operations now return an error or warning.

Passing Complex to if or while. Passing a complex value to if or while now returns
an error:

a = 5j;
if a
 disp 'true'
end
??? Complex values cannot be converted to logicals.

Previously, the imaginary part was ignored unless the argument was sparse.
7-73

7 MATLAB 6.5 Release Notes

7-7
Passing NaN to if or while. Passing NaN to if or while now returns an error:

a = NaN;
if a
 disp 'true'
end
??? NaN's cannot be converted to logicals.

Previously, this generated an error unless the NaN had the logical attribute.

Passing Complex to logical. Passing a complex argument to the logical function
or assigning a complex value to a logical variable returns an error:

a = 5j;
x = logical(a);
??? Error using ==> logical
Complex values cannot be converted to logicals.

This has always been an error.

Passing NaN to logical. Passing a NaN argument to the logical function or
assigning NaN to a logical variable now returns an error:

a = NaN;
x = logical(a)
??? Error using ==> logical
NaN's cannot be converted to logicals.

Previously, this assigned a the value NaN with a logical attribute.

Passing Complex to and, or, not. Passing a complex argument to the and, or, or not
functions now returns an error:

a = 5j;
x = ~a;
??? Error using ==> ~
Operands to NOT must not be complex.

Previously, this assigned a the value zero.
4

Upgrading from an Earlier Release
Passing NaN to and, or, not. Passing NaN to the and, or, or not functions now
returns an error:

a = NaN;
x = ~a
??? Error using ==> ~
NaN's cannot be converted to logicals.

Previously, this assigned a the value zero.

Assigning Nonlogical Values to logical. Passing incompatible arguments to the
logical function or assigning them to a logical variable now generates a
warning. Note in the example below that the value assigned to the logical
array (100) is converted by MATLAB to logical 1.

a = (magic(4) > 10);
a(2,3) = 100
Warning: Values other than 0 or 1 converted to logical 1

a =
 1 0 0 1
 0 1 1 0
 0 0 0 1
 0 1 1 0

Previously, this resulted in no warning and assigned 100 to a(2,3).

Graphics Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of graphics features, are discussed below.

Change to smooth3
Calculation of the gaussian filter option of the smooth3 function has been
corrected. This change may result in visual changes to graphs made with the
smoothed data.
7-75

7 MATLAB 6.5 Release Notes

7-7
External Interfaces/API Upgrade Issues
The issues involved in upgrading from MATLAB 6.1 to MATLAB 6.5, in terms
of external interfaces and API features, are discussed below. These include

• “Changes to logical and sparse Data Types” on page 7-76

• “Functions Replaced in MATLAB 6.5” on page 7-77

• “Compiling C++ Files” on page 7-79

• “LCC Support for LAPACK” on page 7-79

• “Client Support for COM” on page 7-79

Changes to logical and sparse Data Types
In MATLAB 6.5, the sparse data type has been changed to be an attribute of
its underlying data type. Also, the logical data attribute has been changed to
be a first class data type. See “Programming and Data Types Upgrade Issues”
on page 7-52 for more information on this change.

The following sections describe how this change may affect your C programs.

No Change to mxIsLogical. The mxIsLogical function is unchanged in MATLAB
6.5. It returns true for logical arrays, as it did for arrays with a logical
attribute in previous releases.

Testing for Numeric. In previous releases, mxIsNumeric returned true for
numeric arrays with the logical attribute. This function now returns false
for logical arrays, since logical is a nonnumeric data type.

Using mxGetClassID on logicals. mxGetClassID returns a new mxLOGICAL_CLASS
value for logical arrays.

Using mxGetClassID on Sparse Arrays. mxGetClassID no longer returns the
enumerated value mxSPARSE_CLASS. Instead, it returns the enumerated value
corresponding to the underlying data type. Use mxIsSparse to determine if an
mxArray is sparse.

Testing for Sparse. In previous releases, you could use the following statement to
determine if a matrix is sparse. This does not work in MATLAB 6.5.

mxGetClassID(x) == mxSPARSE_CLASS
6

Upgrading from an Earlier Release
You should use mxIsSparse(x) to determine if a matrix is sparse. The
mxIsSparse function operates the same as in previous releases and also
executes faster than the operation shown above.

Testing for Sparse with mxIsDouble. Because sparse has been changed from a
MATLAB data type to a data attribute, mxIsDouble(x) no longer implies
~mxIsSparse(x), as it did in previous releases. Test the sparseness of an array
using mxIsSparse instead.

No Change to mxIsSparse. The mxIsSparse function is unchanged in MATLAB
6.5. It returns true for arrays with a sparse attribute, as it did for sparse
arrays in previous releases.

Obsolete logical Functions. The following two functions are now obsolete. Support
for these functions will be removed in a future release.

Functions Replaced in MATLAB 6.5
MATLAB handles mxArrays more efficiently in version 6.5 by not storing a
variable name in the mxArray. When an mxArray name is required, these new
C and Fortran functions enable you to pass it in the argument list.

The functions shown in the left column of the table replace those in the right
column. The functions shown in the right column are now obsolete and may be
unavailable in a future version of MATLAB.

Function Description

mxSetLogical Convert mxArray to logical type

mxClearLogical Convert mxArray to numeric type

New Function Replaces

mexGetVariable mexGetArray

mexGetVariablePtr mexGetArrayPtr

mexPutVariable mexPutArray

engGetVariable engGetArray
7-77

7 MATLAB 6.5 Release Notes

7-7
For example, you should replace the second and third line shown here

parr = mxCreateDoubleMatrix(0, 0, 0);
mxSetName(parr, name);
retval = matPutArray(ph, parr);

with the second line shown below. The name of the mxArray is passed with
matPutVariable rather than stored in the mxArray by mxSetName:

parr = mxCreateDoubleMatrix(0, 0, 0);
retval = matPutVariable(ph, name, parr);

mxCreateScalarDouble Replaced. New function mxCreateDoubleScalar replaces
mxCreateScalarDouble. The latter function is still supported at this time, but
support may be removed in a future release.

engPutVariable engPutArray

matDeleteVariable matDeleteArray

matGetVariable matGetArray

matGetVariableInfo matGetArrayHeader

matGetNextVariable matGetNextArray

matGetNextVariableInfo matGetNextArrayHeader

matPutVariable matPutArray

matPutVariableAsGlobal matPutArrayAsGlobal

New Function Replaces

mxCreateDoubleScalar mxCreateScalarDouble

New Function Replaces
8

Upgrading from an Earlier Release
Compiling C++ Files
You no longer need to use the preconfigured options file, cxxopts.sh, to
compile C++ MEX-files. MATLAB recognizes the following file extensions as
C++ extensions, and automatically uses the C++ compiler.

.cxx

.cpp

.cc

The cxxopts.sh file is no longer available in MATLAB.

Also, on UNIX, you must now use the -cxx switch to the MEX script if you are
linking C++ objects.

LCC Support for LAPACK
On Windows platforms, you can now compile and link C MEX-files that call
LAPACK and BLAS functions using the MATLAB C compiler, Lcc. Use the
following command to compile the file myCmexFile.c and link it with the
LAPACK library file, libmwlapack.lib.

mex myCmexFile.c <matlab>/extern/lib/win32/lcc/libmwlapack.lib

The term <matlab> stands for the MATLAB root directory.

Client Support for COM
Client support for the MATLAB COM interface has changed significantly in
MATLAB 6.5. There are many new features as well as important changes in
previously supported features. This section describes how these changes may
affect your existing programs.

See “New COM Client Support Features” on page 7-34 in these Release Notes
and “MATLAB COM Client Support” in the MATLAB documentation for more
information.

Creating an Object or Interface. When you create a COM control or server with
actxcontrol or actxserver, MATLAB returns a COM object which now is
displayed as COM.<string> rather than as activex object:

h = actxserver('Excel.Application')
h =
 COM.excel.application
7-79

7 MATLAB 6.5 Release Notes

7-8
This also applies to interfaces to a COM object. MATLAB represents the
interface as Interface.<string> rather than as activex object:

w = get(h, 'Workbooks')
w =
 Interface.excel.application.Workbooks

New Error on Non-Existent ProgID. Both actxcontrol and actxserver return a
different error message when an invalid ProgID is entered:

h = actxcontrol('xxxxx')
??? Error using ==> actxcontrol
Control creation failed. Invalid ProgID 'xxxxx'

Data Returned by get. Information returned by the get function now shows the
type for each interface:

h = actxserver ('Excel.Application');
get(h)
ans =
 Application: [1x1 Interface.excel.application.Application]
 Parent: [1x1 Interface.excel.application.Parent]
 Windows: [1x1 Interface.excel.application.Windows]
 Workbooks: [1x1 Interface.excel.application.Workbooks]
 .
 .

Property names returned by get are no longer arranged alphabetically. They
are displayed in the order that MATLAB gets them from the Type Library.

Set Invoked with No Arguments. When you invoke the set function without any
arguments other than the object or interface handle, MATLAB no longer
returns an error. Instead it returns a structure array, listing all properties for
the object. The structure array also contains enumerated values for those
properties that allow you to express values as enumerated strings.

Old error message:

set(h)
??? Index exceeds matrix dimensions.
0

Upgrading from an Earlier Release
Values returned in MATLAB 6.5:

set(h)
ans =
 Application: {}
 Creator: {'xlCreatorCode'}
 Parent: {}
 Cursor: {4x1 cell}
 .
 .

Change in Method Data Returned by invoke. The invoke function now returns more
useful data on the methods of an object or interface. Note the differences shown
in the example below:

h = actxserver('excel.application');

% Invoke, prior to MATLAB 6.5
invoke(h)
 DeleteCustomList = Void DeleteCustomList (Int)
 MailLogon = Void MailLogon (Variant[opt], Variant[opt],
 Variant[opt])
 NextLetter: 'Variant(Pointer) NextLetter ()'
 :
 :

% Invoke, in MATLAB 6.5
invoke(h)
 DeleteCustomList: 'void DeleteCustomList(handle, int32)'
 MailLogon: 'void MailLogon(handle, [Optional]Variant)'
 NextLetter: 'handle NextLetter(handle)'
 :
 :

Also note that the required handle argument is now explicitly shown.
7-81

7 MATLAB 6.5 Release Notes

7-8
Methods Function for COM. The methods function now returns the names for all
methods of the specified class:

h = actxcontrol('MWSAMP.MWSampCtrl.1');
methods(h)

Methods for class COM.mwsamp.mwsampctrl.1:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release
GetBSTR GetVariantVector addproperty save
 :
 :

You can also use the methodsview function on COM objects now to get a
graphical display of object properties.

Properties with Arguments. Any property that takes arguments is treated as a
method in MATLAB 6.5. For example, the Range and Item properties in an
Excel application server are now methods.

So, this statement, where Item is a property of Sheets

sheet2 = get(Sheets, 'Item', 2);

can now be replaced by the following, where Item is now a method of Sheets.

sheet2 = invoke(Sheets, 'Item', 2);

If you request a list of properties and methods for Sheets (using get and
invoke, respectively), MATLAB now lists Item as a method.

For backward compatibility, functions in MATLAB 6.5 support properties that
take arguments both as methods and as properties.

Arguments to Event Handlers. When a control triggers an event, MATLAB passes
arguments from the control to any registered event handlers. MATLAB now
passes two additional arguments:

• A string argument, holding the name of the event.

• A structure argument, holding the event name, control name, event
identifier, event argument names, and event argument values.
2

Upgrading from an Earlier Release
See “Writing Event Handlers” in the MATLAB documentation for more
information on changes affecting event handlers.

Specifying Events Using Identifiers. When registering events with their handler
functions using either the actxcontrol or registerevent function, you can
specify events either by event ID number or by event name.

Using event ID numbers:

h = actxcontrol('MWSAMP.MwsampCtrl.2', [0 0 200 200], f, ...
 {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

Using event names:

h = actxcontrol('MWSAMP.MwsampCtrl.2', [0 0 200 200], f, ...
 {'Click', 'myclick'; 'DblClick' 'my2click'; ...
 'MouseDown' 'mymoused'});

Use the new events function to display the names of all events recognized by
the COM object in use. For example, to list all events for the mwsamp control, use

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

events(h)
 Click = void Click()
 DblClick = void DblClick()
 MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)

Boolean Return Values. Invoking get on a property that returns a Boolean value
now returns 1 to indicate true. Previously, it returned -1 for true:

h = actxserver('Excel.Application');
set(h, 'DisplayStatusBar', 1);
get(h, 'DisplayStatusBar')
ans =
 1
7-83

7 MATLAB 6.5 Release Notes

7-8
Also, invoking a method that returns a Boolean value now returns 1 to indicate
true. This also previously returned -1 for true:

h = actxserver('Excel.Application');
invoke(h, 'Wait', 5)
ans =
 1

Argument Callouts in Error Messages. When a MATLAB client sends a command
with an invalid argument to a COM server application, the server sends back
an error message similar to that shown here, identifying the invalid argument.
Be careful when interpreting the argument callout in this type of message.

PutFullMatrix(handle, 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

In the PutFullMatrix command shown above, it is the fourth argument, 7, that
is invalid. (It is scalar and not the expected array data type.) However, the
error message identifies the failing argument as argument 3.

This is because the COM server receives only the last four of the arguments
shown in the MATLAB code. (The handle argument merely identifies the
server. It does not get passed to the server). So the server sees 'a' as the first
argument, and the invalid argument, 7, as the third.

As another example, submitting the same command with the invoke function
makes the invalid argument fifth in the MATLAB client code. Yet the server
still identifies it as argument 3 because neither of the first two arguments are
seen by the server.

invoke(handle, 'PutFullMatrix', 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

Releasing and Deleting Controls or Servers. This release addresses a potential
memory leak in MATLAB. The leak was caused by the following:

• MATLAB did not completely clean up COM objects or interfaces without the
explicit use of release or delete. For example, the following clear command
did not release all memory used by the object. An explicit release(h) was
required before the clear:
 h = actxcontrol ('MWSAMP.MwsampCtrl.1');
 clear all
4

Upgrading from an Earlier Release
• When a variable representing a COM object or interface was successfully
assigned a new value, MATLAB did not release all of the memory originally
allocated to the object or interface.

• When such a variable went out of scope, MATLAB did not release all of the
memory originally allocated.

Explicit release or deletion of a COM object or interface is no longer necessary.
MATLAB successfully clears the object or interface from memory when clear
is invoked, or when the variable that represents the object or interface is either
assigned a new value or goes out of scope.

Creating Graphical User Interfaces (GUIDE)
Upgrade Issues
Upgrading from MATLAB 6.1 to MATLAB 6.5, in terms of GUIDE-related
features, involves the following issue.

Using GUIDE Version 6.5 to Open GUIs Created in Versions 6.0 or 6.1
GUIDE generates a GUI’s associated M-file with a new structure for Version
6.5. If you open a GUI that was created in Guide versions 6.0 or 6.1 using
GUIDE version 6.5, the GUI will continue to function as it did previously.
However, GUIDE does not update the existing code in the GUI’s M-file to
match the new style. If you add new components to the GUI in GUIDE version
6.5, GUIDE generates callbacks for the new components using the new M-code
style, but leaves the original callbacks unchanged.
7-85

7 MATLAB 6.5 Release Notes

7-8
7Known Software and Documentation Problems
This section includes a link to a description of known software and
documentation problems in MATLAB 6.5.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

For a list of bugs reported in the previous release that remain open, see “Known
Software and Documentation Problems” on page 8-29 in the MATLAB 6.1
Release Notes.
6

Development Environment Features 2-2
Mathematics Features 2-5
Programming and Data Types Features 2-8
Graphics Features 2-10
OpenGL Renderer Feature — Microsoft Windows 2-11
External Interfaces/API Features 2-12
Creating Graphical User Interfaces — GUIDE 2-17

Major Bug Fixes 2-18
Development Environment 2-18
Mathematics . 2-18

Upgrading from an Earlier Release 2-23
Development Environment Issues 2-23
Mathematics Issues 2-24
Programming and Data Types Issues 2-25
Graphics Issue 2-26
External Interfaces/API Issues 2-27

Known Software and Documentation Problems 2-29
Development Environment Problems 2-29
Documentation Updates 2-30
8

MATLAB 6.1 Release
Notes

New Features 2-2

8 MATLAB 6.1 Release Notes

8-2
New Features
This section introduces the new features and enhancements added in MATLAB
6.1 since MATLAB 6.0 (Release 12.0).

This section about new features is organized into the following subsections:

• “Development Environment Features” on page 8-2

• “Mathematics Features” on page 8-5

• “Programming and Data Types Features” on page 8-8

• “Graphics Features” on page 8-10

• “OpenGL Renderer Feature — Microsoft Windows” on page 8-11

• “External Interfaces/API Features” on page 8-12

• “Creating Graphical User Interfaces — GUIDE” on page 8-17

Development Environment Features

Command Window
MATLAB 6.1 includes two command window enhancements:

• You can set a preference for the command window to wrap lines. Input and
output lines wrap to fit within the current width of the command window.

• If an error message appears when running an M-file, click on the underlined
portion of the error message, or press Ctrl+Enter. The offending M-file opens
in the Editor, scrolled to the line containing the error.

Help Browser
When you select documentation for the product filter, you can clear all
currently selected products or select all products.

New Features
Editor/Debugger
The Editor/Debugger has the following enhancements:

• You can set bookmarks in M-files in the Editor/Debugger so that you can go
directly to a particular line in the file. To set a bookmark, position the cursor
at the line you want to bookmark, and then select Set/Clear Bookmark from
the Edit menu.

After setting bookmarks, you can go to the next or previous bookmark in a
file. This allows you to go directly to a marked spot. Use the Edit menu items
Next Bookmark and Previous Bookmark to navigate. Bookmarks are not
saved when you close a file.

• You can include line numbers when printing files from the Editor/Debugger.
To include line numbers, select Preferences -> Editor/Debugger ->
Printing. Under Print options, check Print line numbers.

• You can use keyboard shortcuts to comment or uncomment a selection in the
Editor/Debugger. The shortcuts are platform dependent and are listed with
the menu items on the Editor/Debugger Text menu.

• In the Find/Replace dialog box, settings for Match case, Whole word, and
Wrap around are remembered for the next MATLAB session.

• You can find the previous occurrence of a selection in the Editor/Debugger by
pressing Ctrl+Shift+F3. You can also find the previous occurrence of a string
you entered into the Find & Replace dialog box by pressing Shift+F3.

• When you move an arrow key over a token, for example, an opening
parenthesis, (, the token and its match are briefly underlined. If there is no
matching token, the token appears with a strike-through mark, .

• When you run a file from the Editor/Debugger and the file is not in a
directory on the search path or in the current directory, a dialog box appears
presenting you with options that allow you to run the file. You can either
change the current directory to the directory containing the file, or you can
add to the search path the directory containing the file.

If the file you want to run is already in a directory on the search path or in
the current directory, the current directory remains as is and there are no
actions you need to take.
8-3

8 MATLAB 6.1 Release Notes

8-4
• When you add a breakpoint to a file that is not in a directory on the search
path or in the current directory, a dialog box appears presenting you with
options that allow you to add the breakpoint. You can either change the
current directory to the directory containing the file, or you can add to the
search path the directory containing the file.

If the file you want to run is already in a directory on the search path or in
the current directory, the current directory remains as is and there are no
actions you need to take.

• If you type edit filename and filename does not exist, a prompt appears
asking if you want to create a new file. If you select Yes, a blank file titled
filename.m is created in the Editor/Debugger. You can turn off this option in
preferences for the Editor/Debugger.

Current Directory Browser
In the Find/Replace dialog box, settings for Match case, Whole word, and
Subdirectories are remembered for the next MATLAB session.

Also, you can delete directories that are not empty. All contents of the directory
will be deleted along with the directory.

Workspace Browser
You can select the column on which to sort in the Workspace browser, as well
as reverse the sort order of any column. Click on a column heading to sort on
that column. Click on the column heading again to reverse the sort order in
that column. For example, to sort on Size, click the column heading once. To
change from ascending to descending, click on the heading again.

Source Control
If you use Merant PVCS with MATLAB source control features, you no longer
need to specify the project configuration file using cmopts. If you did specify it
in previous releases, you do not have to remove it as MATLAB will ignore it.

General
The computer function now displays the endian byte ordering of the computer
with the following form.

[str,maxsize,endian] = computer

New Features
Mathematics Features

Evaluation of Solutions to Differential Equation Problems
A new function, deval, enables you to evaluate the solution of a differential
equation problem at a vector of points from the interval in which the problem
was solved. deval uses, as input, the output structure sol of an initial value
problem solver (ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb) or the
boundary value problem solver (bvp4c). A new ODE solver syntax returns the
structure sol.

Additional Functions Use Qhull
These functions are now based on Qhull:

• delaunay — two-dimensional Delaunay triangulation

• convhull — two-dimensional convex hull

These functions call delaunay and therefore are now indirectly based on Qhull:

• voronoi — two-dimensional Voronoi diagrams

• griddata — data gridding and surface fitting

These functions are in addition to the Qhull-based functions introduced in
MATLAB 6.0 (Release 12.0): convhulln, delaunay3, delaunayn, griddata3,
griddatan, and voronoin.

Math Function Summary Tables
This section summarizes

• New math functions

• Functions with new or changed capabilities

Note See “Upgrading from an Earlier Release” on page 8-23 for information
about obsolete functions.
8-5

8 MATLAB 6.1 Release Notes

8-6
New Math Functions

Function Purpose

deval Evaluate the solution of a differential equation problem
using the output of ode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb, or bvp4c.

erfcinv Inverse complementary error function.

tetramesh Tetrahedron mesh plot for use with delaunayn.

triplot 2-D triangular plot for use with delaunay.

Math Functions with New or Changed Capabilities

Function Enhancement/Change

bvpinit New syntax solinit = bvpinit(sol,[anew bnew])
extrapolates a solution sol as an initial guess for solving a
BVP on an extended interval. It can copy parameters from
the previous iteration or let the user to provide new ones.
For more information, see “Boundary Value Problems for
ODEs” in the MATLAB documentation.

bvpset New Vectorized option lets you pass to the solver bvp4c
an array of column vectors. This allows bvp4c to reduce
the number of function evaluations, and may significantly
reduce solution time. For more information see “Boundary
Value Problems for ODEs” in the MATLAB
documentation.

convhull New syntax [K,a] = convhull(x,y) returns the area a of
the convex hull.

convhulln New syntax [K,v] = convhulln(X) returns the volume v
of the convex hull.

New Features
numel New syntax n = numel(A, varargin) returns the number
of subscripted elements, n, in
A(index1,index2,...,indexn), where varargin is a cell
array whose elements are index1, index2, ..., indexn.

ode45,
ode23,
ode113,
ode15s,
ode23s,
ode23t,
ode23tb

New syntax sol = solver(odefun,[t0 tf],y0...)
returns a structure that you can use with the new function
deval to evaluate the solution at any point on the interval
[t0,tf].

polyeig New syntax e = polyeig(A0,A1,..,Ap) returns only the
eigenvalues of the specified eigenvalue problem. Use
[X,e] = polyeig(A0,A1,...Ap) if you also want the
eigenvectors. This capability is available in MATLAB 6.0
(Release 12.0).

ppval New syntax ppval(xx,pp) transposes the input
arguments to enable you to use ppval with function
functions.

qz New syntax [AA,BB,Q,Z,V,W] = qz(A,B) returns W, the
left generalized eigenvectors of A and B.

reshape New syntax reshape(A,...,[],...) calculates the length
of the dimension specified by the placeholder [].

svd Can now return only the first two outputs, U and S, where
S is a diagonal matrix of the same dimension as the input
argument X, and U is a unitary matrix.

Math Functions with New or Changed Capabilities (Continued)

Function Enhancement/Change
8-7

8 MATLAB 6.1 Release Notes

8-8
Programming and Data Types Features

Partial Evaluation of Expressions
Within the context of an if or while expression, MATLAB does not necessarily
evaluate all parts of a logical expression. In some cases, it is possible, and often
advantageous, to determine whether an expression is true or false through only
partial evaluation. This is sometimes referred to as short-circuiting.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no need
to evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then
the expression is true, regardless of B. Again, MATLAB does not evaluate the
latter part of the expression.

1) if (A & B) 2) if (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a
part of an expression only if a preceding part evaluates to the desired state.

Note Partial evaluation of expressions in if and while was also available in
MATLAB 6.0, but was not documented.

New MATLAB Search String Function
strfind is a new character array function in MATLAB. It searches for all
occurrences of a string pattern within another, longer string. Placement of the
two string arguments in the argument list requires that you be specific about
which string is the character pattern to search for and which is the string in
which to search. This allows you more control over how the search is performed
compared with the MATLAB findstr function, particularly when executing
searches within a loop.

New Features
New File I/O Functions for Scientific Data Formats
There are six new MATLAB 6.1 functions that enable you to retrieve
information and data from Common Data Format (CDF), Flexible Image
Transport System (FITS), and Hierarchical Data Format (HDF) files.

New Audio Functions
MATLAB 6.1 includes two new audio functions for 32-bit Windows platforms
only.

Date Conversion Changes
The datenum and datestr functions can now accept a date vector, as defined by
datevec, as an input argument. For example, datestr(clock) returns the
current date and time as string such as 27-Apr-2001 15:58:41.

Function Purpose

cdfinfo Return information about a CDF file

cdfread Read data from a CDF file

fitsinfo Return information about a FITS file

fitsread Read data from a CDF file

hdfinfo Return information about an HDF or HDF-EOS file

hdfread Read data from an HDF or HDF-EOS file

Function Purpose

audioplayer Create an audio object to play audio data

audiorecorder Create an audio object to record audio data
8-9

8 MATLAB 6.1 Release Notes

8-1
Graphics Features

Transparent Legend
You can now make the legend box transparent, enabling you to see the plotted
data behind the legend. See legend for more information.

New Ghostscript Drivers
The following new Ghostscript drivers are available with MATLAB by using
the device switch shown below.

New Ghostscript Output Filters for Exporting
The following new Ghostscript output filters are available with MATLAB by
using the option switch shown below.

Higher Resolution Metafiles
You can now set the resolution of a Windows Enhanced Metafile copied from a
MATLAB figure window with the print -dmeta command. Set the resolution
using the -d option of the print command. For example, to copy a figure to a
metafile having a resolution of 200 dpi, use

print -dmeta -r200

MATLAB uses the screen resolution as the default.

Printer Driver Device Switch

Canon Color BubbleJet BJC-800 -dbjc800

HP LaserJet 4.5L and 5P -dljet4

HP LaserJet 5 and 6 -dpxlmono

File Format Option Switch

BMP Monochrome BMP -dbmpmono

PDF Color file Format -dpdf
0

New Features
Default PaperType and PaperUnits Set For International Users
The matlabrc.m startup file now sets the default PaperType and PaperUnits
properties based on ISO Country Codes. These default to 'a4' and
'centimeters' respectively for users in countries that normally default to
these settings. Other countries still default to 'usletter' and 'inches'.

The same values are used for default Simulink PaperType and PaperUnits
properties in the matlabrc.m startup file.

You can still set default PaperType or PaperUnits values yourself by adding
the following to startup.m.

set(0, 'DefaultFigurePaperType', 'a4')
set(0, 'DefaultFigurePaperUnits', 'centimeters')

OpenGL Renderer Feature — Microsoft Windows
If you do not want to use hardware OpenGL, but do want to use object
transparency, you can issue the following command.

feature('UseGenericOpenGL',1)

This command forces MATLAB to use generic OpenGL on Microsoft Windows
platforms. Generic OpenGL is useful if your hardware version of OpenGL does
not function correctly and you want to use image, patch, or surface
transparency, which requires the OpenGL renderer.

To reenable hardware OpenGL, use the command

feature('UseGenericOpenGL',0)

Note that the default setting is to use hardware OpenGL

To query the current state of the generic OpenGL feature, use the command

feature('UseGenericOpenGL')

See the opengl reference page for additional information.
8-11

8 MATLAB 6.1 Release Notes

8-1
External Interfaces/API Features

Concatenation of Java Arrays
In MATLAB 6.1, you can concatenate arrays of Java objects that have unlike
dimensions. The following example concatenates a 2-by-3 array of
java.lang.Integer with a 4-by-3 array of the same class.

A =
java.lang.Integer[][]:
 [1] [2] [3]
 [4] [5] [6]
 [17] [18] [19]
 [20] [21] [22]

B =
java.lang.Integer[][]:
 [11] [12] [13]
 [14] [15] [16]

The vertical concatenation [A;B] is simple since both arrays have the same
number of columns. The horizontal concatenation [A B] merges the two arrays
into an irregularly shaped array having six columns in the first and second
rows and three columns in the third and fourth rows.

C = [A;B] C = [A B]
C = C =
java.lang.Integer[][]: java.lang.Integer[][]:
 [1] [2] [3] [6 element array]
 [4] [5] [6] [6 element array]
 [11] [12] [13] [3 element array]
 [14] [15] [16] [3 element array]
 [17] [18] [19]
 [20] [21] [22]

Note “Concatenation of Java Objects” on page 8-27 discusses changes to how
Java objects are concatenated.
2

New Features
New Fortran MX, MEX, MAT, and ENG Functions
The following functions have been added to the Fortran MX, MEX, MAT, and
Engine external interface. Most of these functions already exist in the
MATLAB C language API.

Table 8-1: New Fortran MX Functions

mxAddField mxCalcSingleSubscript

mxClassIDFromClassName mxClearLogical

mxCopyComplex8ToPtr mxCopyInteger1ToPtr

mxCopyInteger2ToPtr mxCopyPtrToComplex8

mxCopyPtrToInteger1 mxCopyPtrToInteger2

mxCopyPtrToReal4 mxCopyReal4ToPtr

mxCreateCellArray mxCreateCellMatrix

mxCreateCharArray mxCreateCharMatrixFromStrings

mxCreateDoubleMatrix mxCreateNumericArray

mxCreateNumericMatrix mxCreateScalarDouble

mxCreateStructArray mxCreateStructMatrix

mxDestroyArray mxDuplicateArray

mxGetCell mxGetClassID

mxGetClassName mxGetData

mxGetDimensions mxGetElementSize

mxGetEps mxGetField

mxGetFieldByNumber mxGetFieldNameByNumber

mxGetFieldNumber mxGetImagData

mxGetInf mxGetNaN

mxGetNumberOfDimensions mxGetNumberOfElements

mxGetNumberOfFields mxIsCell
8-13

8 MATLAB 6.1 Release Notes

8-1
mxIsChar mxIsClass

mxIsEmpty mxIsFinite

mxIsFromGlobalWS mxIsInf

mxIsInt8 mxIsInt16

mxIsInt32 mxIsLogical

mxIsNaN mxIsSingle

mxIsStruct mxIsUint8

mxIsUint16 mxIsUint32

mxMalloc mxRealloc

mxRemoveField mxSetCell

mxSetData mxSetDimensions

mxSetField mxSetFieldByNumber

mxSetImagData mxSetLogical

Table 8-2: New Fortran MEX Functions

mexFunctionName mexGetArray

mexGetArrayPtr mexIsGlobal

mexIsLocked mexLock

mexMakeArrayPersistant mexMakeMemoryPersistant

mexPutArray mexUnlock

mexWarnMsgTxt

Table 8-3: New Fortran MAT Functions

matDeleteArray matGetArray

matGetArrayHeader matGetNextArray

Table 8-1: New Fortran MX Functions (Continued)
4

New Features
Property Added to ActiveX and Engine Interfaces
For ActiveX automation server applications and MATLAB Engine applications
running on Windows, you can control whether the application windows appear
on the Windows desktop with a new property called Visible.

When Visible is set, the ActiveX application or engine server window is visible
on the desktop, thus enabling user interaction with the server. This is the
default. When Visible is cleared, the application or engine window is removed
from the desktop.

ActiveX. This example disables the visibility of an ActiveX automation server
application by setting h.visible to 0. It checks the visibility setting in line 3
by examining h.visible.

h = actxserver('Matlab.Application');
h.visible = 0;

h.visible
ans =
 0

MATLAB Engine. For a MATLAB engine session, use the engSetVisible and
engGetVisible functions that are new in MATLAB 6.1. Line 4, below, disables
the visibility of the MATLAB engine window using engSetVisible with an
argument of 0. Line 5 checks this setting with engGetVisible.

Engine *ep;
bool vis;
ep = engOpen(NULL);
engSetVisible(ep, 0);
engGetVisible(ep, &vis);

matGetNextArrayHeader matPutArray

matPutArrayAsGlobal

Table 8-4: New Fortran Engine Functions

engGetArray engPutArray

Table 8-3: New Fortran MAT Functions (Continued)
8-15

8 MATLAB 6.1 Release Notes

8-1
Serial I/O
The MATLAB serial port interface provides direct access to peripheral devices
such as modems, printers, and scientific instruments that you connect to your
computer’s serial port. This interface is established through a serial port object,
which you create with the serial function.

Freeing the Serial Port on Windows Platforms. The serial port object uses the
javax.comm package to communicate with the serial port. However, due to a
memory leak in javax.comm, the serial port object is not released from memory.
You can use the freeserial function to release the MATLAB hold on the serial
port.

freeserial is necessary only on Windows platforms. You should use
freeserial only if you need to connect to the serial port from another
application after a serial port object has been connected to that port, and you
do not want to exit MATLAB.

Events, Callbacks, and Function Handles. Action properties and action functions are
now referred to as callback properties and callback functions. This new
terminology is reflected in new names for the associated properties and
functions. The general rule for the name changes is to change “Action” to “Fcn”
for properties, and “action” to “callback” for functions. For example,
TimerAction has been renamed TimerFcn, and instraction has been renamed
instrcallback.

Additionally, if you want to automatically pass the object and event
information to the callback function, then you must specify the function as
either a function handle or as a cell array. Note that you can also specify the
callback function as a string. In this case, the callback is evaluated in the
MATLAB workspace and no requirements are made on the function’s input
arguments.

Enhancements to Existing Properties.

• Terminator Property – You can configure Terminator to a decimal value
ranging from 0 to 127, to the equivalent ASCII character, to CR/LF or LF/CR,
or to empty ('').

• Timer events – Some timer events may not be processed if your system is
significantly slowed or if the TimerPeriod value is too small. The minimum
TimerPeriod value is now 0.01 second.
6

New Features
Creating Graphical User Interfaces — GUIDE
This section lists the changes made to GUIDE for Release 12.1:

• The Layout Editor Edit menu has Undo and Redo items. You can undo or
redo layout actions and property settings (with the exception of the figure
FileName property).

• The Application Option dialog supports a new option for Command-line
accessibility – Callback. This option is now the default.

• The Layout Editor displays the layout grid in the current figure color.

• The Layout Editor context menus have been reorganized.

• The Menu Editor enables you to rearrange the order of menu items.

• The Menu Editor adds callback function stubs to the application M-file.

See Creating Graphical User Interfaces in the MATLAB documentation for
more information.
8-17

8 MATLAB 6.1 Release Notes

8-1
Major Bug Fixes
MATLAB 6.1 includes several bug fixes made since MATLAB 6.0. This section
describes the particularly important bug fixes.

Development Environment

Help Browser Supports Mouse Wheel
For Windows platforms, the wheel on your mouse will now work in the Help
browser.

UNIX Help Browser Search Results Now Highlighted
On UNIX systems, when you perform a full text search using the Help browser,
the search terms are highlighted when you view a page.

UNIX Paste Problems Fixed
On some UNIX systems, pasting after a cut or copy would sometimes cause the
system to hang. That problem has been fixed. However, due to issues with
UNIX itself, the paste does not always work and you might have to do it again.

Mathematics

Memory Leak Fixed in Matrix Multiply
Under certain conditions, matrix multiply (which includes matrix-vector
multiply, vector-matrix multiply, and even vector inner products) leaked
memory. For example, on a Pentium III under Linux or Windows, any vector
inner product of length greater than 15,000 leaked memory. This was observed
by MATLAB increasing its use of system resources that were never returned.
MATLAB 6.1 uses new ATLAS BLAS libraries that no longer leak memory.

Improved Convergence for eigs(A,k,'sm') and eigs(A,k,0)
In MATLAB 6.0, eigs was reimplemented to use the ARPACK library of
routines. Unfortunately, the smallest magnitude case, sigma = 'sm' and
sigma = 0, chose the wrong algorithm. For MATLAB 6.1, the correct ARPACK
algorithm is used and convergence is much quicker.
8

Major Bug Fixes
This bug fix introduces a backwards incompatibility. When A is a function Afun
and sigma = 'sm', Afun must now return Y = A\x. Prior to MATLAB 6.1, eigs
required Afun to return y = A*x for this case.

quad Sampling Improved
In MATLAB 6.0, quad('cos(4*n*x)',-pi,pi) returned 2*pi instead of 0.
When quad initially sampled the function, it incorrectly assumed the function
is the constant 1 over the interval [-pi,pi] and so returned 2*pi early. It now
samples more carefully and returns 0.

griddata3 Inner Matrix Error Message
In MATLAB 6.0, an internal error sometimes caused griddata3 to display the
error message, Inner matrix dimensions must agree. This error has been
corrected.

Improved Handling of Degenerate Triangulation
In MATLAB 6.0, there were sometimes problems associated with degenerate
triangulation. For example, convhull could produce a convex hull that did not
cover all the original data. MATLAB 6.1 corrects this problem by replacing the
utility function delaunayc with Qhull.

Error Message Display for Qhull-Related Functions
In MATLAB 6.0, Qhull-related functions (e.g., delaunayn) displayed error
messages in standard error. For UNIX platforms, standard error is different
from the command window. For MATLAB 6.1, error messages are displayed in
the command window.

histc Computes First Two Bins Correctly
Prior to MATLAB 6.0, histc produced the wrong results for the first two bins
for cases with extremely nonuniform bin edges. This problem was corrected in
MATLAB 6.0.

 Processor has been on-line since 04/20/2001 14:09:31
 The alpha EV4.5 (21064) processor operates at 233 MHz,
 and has an alpha internal floating-point processor.

The number in parentheses on the third line, in above example (21064), is the
number you are interested in.
8-19

8 MATLAB 6.1 Release Notes

8-2
GLNX86. Enter the following command

cat /proc/cpuinfo

and look for the following fields in the output (values may vary from the
example below)

vendor_id :GenuineIntel
cpu family :6
model :8
model name :Pentium III (Coppermine)
stepping :1

Match up this information with the table in <MATLAB>\bin\glnx86\blas.spec.

Note Some versions of glibc 2.1.x have problems with environment variables
(and the ability to reliably query them) from within shared library init
functions. To take advantage of the BLAS_VERSION feature, you may need to
upgrade your machine to glibc 2.2.
0

Major Bug Fixes
HP700. Start with the System Administration Manager (SAM) and work your
way to the Processor tab, as shown below:

System Administrator Manager (SAM) -> Performance monitors ->
System properties -> Processor tab

This provides information about the type of processor.

HPUX. MATLAB only supports HPUX running on PA-RISC2.0.

IBM_RS. Contact IBM Technical Support and request the document entitled
“Determining CPU Speed in AIX.” This is a table of machine types, processor
types, and processor speeds.

SGI. Enter the following command

sysinfo -a

which returns a lot of information. In the first few lines, look for information
something like

CPU Type is mips R4400 5.0

The information starting with R is what you are interested in. MATLAB ships
for the R5000, R8000, R10000 and R12000 (default).

SOL2. Enter the following command

uname -m

which returns either sun4u for UltraSPARC or sun4m for the older, non-Ultra
machines (e.g., Hyper and SuperSPARCs).

WIN32. Start with the My Computer icon, and work your way to the General
tab, as shown below:

My Computer -> Control Panel -> System -> General tab

This should list the family and model number for your computer. On Windows
NT and Windows 2000, the same information is on the Environment tab,
under the System Variable PROCESSOR_IDENTIFIER. Match up this information
with the table in <MATLAB>\bin\win32\blas.spec.
8-21

8 MATLAB 6.1 Release Notes

8-2
Using Another BLAS
You may also use BLAS from other sources than the ones shipped with
MATLAB, provided they are in the correct format. This format is a shared
library (as opposed to a static library) that exports all the double-precision
(starting with d) and double-precision complex (starting with z) BLAS routines
from dasum to zupmtr. On HP, IBM_RS, and WIN32, the symbols must be
exported without trailing underscores, while for ALPHA, GLNX86, SGI, and
SOL2, the symbols must be exported with trailing underscores (e.g., dgemm_).

If the shared library you provide also includes LAPACK symbols like dgefa (or
dgefa_), then they will override the MATLAB default implementation, which
is based on the Fortran LAPACK from Netlib at http://netlib.org.
2

Upgrading from an Earlier Release
Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from MATLAB
6.0 (Release 12.0) to MATLAB 6.1 (Release 12.1). This section about upgrading
from an earlier release is organized into the following subsections:

• “Development Environment Issues” on page 8-23

• “Mathematics Issues” on page 8-24

• “Programming and Data Types Issues” on page 8-26

• “Graphics Issue” on page 8-27

• “External Interfaces/API Issues” on page 8-27

Development Environment Issues

subscribe Function No Longer Supported
The subscribe function is no longer supported.

Command History, Preferences, and Favorites
If you uninstall Release 12.0, you will lose the Command History, preferences,
and Help browser favorites from Release 12.0.

To keep these files for use in Release 12.1, make a copy of them before
uninstalling Release 12. To see where the files are located, run prefdir in the
Command Window. The relevant files are listed below.

After uninstalling Release 12, put your backup copy of the files in the location
returned by prefdir so that Release 12.1 can use the files.

Filename File For

cwdhistory.m Command Window history

history.m Command History

matlab.prf Preferences

matlab_help.hst Help browser favorites
8-23

8 MATLAB 6.1 Release Notes

8-2
Help Browser Favorites
If you use favorites you created for the documentation in the Release 12.0 Help
browser, those favorites may point to an incorrect or invalid location in Release
12.1. You will need to delete any invalid favorites and add those favorites
again.

Source Control
If you use Microsoft Visual SourceSafe with the MATLAB source control
features, you now need to specify the login information for SourceSafe using
preferences. Select File -> Preferences -> General -> Source Control from the
desktop. Specify the Username, Password, and Database.

Mathematics Issues

Finding Smallest Magnitude Eigenvalues
eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma. For sigma = 'sm', eigs returns the smallest magnitude eigenvalues.

In MATLAB 6.0, eigs was reimplemented to use the ARPACK library of
routines. Unfortunately, the smallest magnitude case, sigma = 'sm' and
sigma = 0, chose the wrong algorithm. For MATLAB 6.1, the correct ARPACK
algorithm is used and convergence is much quicker.

This bug fix introduces a backwards incompatibility. When A is a function Afun
and sigma = 'sm', Afun must now return Y = A\x. Prior to MATLAB 6.1, eigs
required Afun to return y = A*x for this case.

Possible Changes in Results Returned by Matrix Functions
Starting in MATLAB 6.0 (R12.0), matrix computations are based on LAPACK,
a large, multiauthor Fortran subroutine library for numerical linear algebra.
While this change has many benefits and matrix functions continue to operate
in the same way in MATLAB 6.0, the results returned by matrix functions may
differ. Changes in roundoff errors can be seen in most matrix computations. In
cases where quantities are not uniquely determined mathematically, results
may differ in order and in normalization.

For example:

• Eigenvalues may be returned in a different order.
4

Upgrading from an Earlier Release
• Eigenvectors may be normalized differently.

• The signs of columns of orthogonal matrices may differ.

• rcond is a better estimate of the reciprocal condition.

• lu can now be used to factor rectangular full matrices.

Obsolete Input Arguments
Certain input arguments to these functions have become obsolete. Using these
arguments does not result in an error, but they are ignored.

Obsolete Functions
The following MATLAB function has become obsolete. For backwards
compatibility, it has not been removed from the language at this time.
However, this function may be removed in a future release, and you are
encouraged to discontinue its use, or use the function that replaces it
.

Function Description

delaunay Now ignores the third argument fuzz, which
specified a value for the fuzz standard deviation.

Now ignores the third argument 'sorted'. This
argument indicated to delaunay that the given points
x and y were sorted, and that duplicate points had
been eliminated.

convhull Now ignores the third argument TRI, which provided
triangulation data previously computed using
delaunay.

Function Description

bvpval Evaluate the numerical solution of a boundary value
problem (BVP). Replace with deval, which evaluates
the solution of both initial value and boundary value
differential equation problems.
8-25

8 MATLAB 6.1 Release Notes

8-2
Programming and Data Types Issues

Output from Background and Foreground Commands (UNIX)
In Release 12 on UNIX platforms, a background command (i.e., any system
command after which you add a &), such as

! cat startup.m &

no longer produces any output. Prior to Release 12, a background command
sent output to the command window.

If you need to see the output from a command, either do not make the command
a background command (i.e., remove the &), or run the background command
in a separate xterm. To start another xterm, issue the following command.

! xterm &

In Release 12, foreground functions (i.e., nonbackground functions) send their
output to the diary, if the diary function has been issued. The output is also
displayed in the command window (prior to Release 12, foreground function
output was only displayed in the command window).

matlab_helper Process
To make the ! and unix commands operate more efficiently, in Release 12
MATLAB creates a secondary process, called matlab_helper, at startup.

This matlab_helper contains those elements of MATLAB necessary to run the
! and unix commands.
6

Upgrading from an Earlier Release
Graphics Issue

MATLAB No Longer Supports Terminal Mode
MATLAB no longer runs on nongraphics computer terminals.

External Interfaces/API Issues

Concatenation of Java Objects
When you concatenate Java objects, the class of the resultant object depends
on the classes of the input objects, as follows:

• If the input objects are of the same class, MATLAB makes the output object
of that class. This was true in Version 6.0 as well.

• If the input objects are of different classes, but all inherit from a common
class, MATLAB makes the output object of the common parent class.
MATLAB selects the lowest common parent in the Java class hierarchy as
the output class. This is new behavior for Version 6.1.

For example, concatenating objects of classes java.lang.Integer and
java.lang.Double creates a new object of class java.lang.Number.

• If the input objects are of different and unrelated classes, then MATLAB
makes the output object of the java.lang.Object class. This was true in
Version 6.0 as well.

Obsolete Fortran MX, MEX, MAT, and ENG Functions
The following Fortran MX, MEX, MAT, and ENG functions are considered to
be obsolete as of Version 6.1. Support for these functions may be removed from
a future MATLAB release.

Table 8-5: Obsolete Fortran MX Functions

mxCreateFull mxFreeMatrix

mxIsFull mxIsString
8-27

8 MATLAB 6.1 Release Notes

8-2
Table 8-6: Obsolete Fortran MEX Functions

mexGetEps mexGetGlobal

mexGetFull mexGetInf

mexGetMatrix mexGetMatrixPtr

mexGetNaN mexIsFinite

mexIsInf mexIsNaN

mexPutFull mexPutMatrix

Table 8-7: Obsolete Fortran MAT Functions

matDeleteMatrix matGetFull

matGetMatrix matGetNextMatrix

matGetString matPutFull

matPutMatrix matPutString

Table 8-8: Obsolete Fortran Engine Functions

engGetFull engGetMatrix

engPutFull engPutMatrix
8

Known Software and Documentation Problems
Known Software and Documentation Problems
This section updates the MATLAB 6.1 documentation set, reflecting known
MATLAB 6.1 software and documentation problems. It is organized into the
following subsections:

• “Development Environment Problems” on page 8-29

• “Documentation Updates” on page 8-30

Development Environment Problems

Displaying Results From lookfor Function
When you run the lookfor function, press Ctrl+C to display the results in the
command window.

Cannot Go To Top Level of UNC Path
For Windows platforms, you cannot use cd or any directory tool in the
MATLAB desktop (including the Current Directory browser and Set Path
dialog box) to access the top level of a UNC path.

Workspace Browser with Many Variables
If there are many variables in the workspace and the Workspace browser is
open, you may experience performance problems. If you expect to have more
than 1000 variables in the workspace, close the Workspace browser to avoid
performance problems.

UNIX Display Problems When UNIX Client and Server Platforms Differ
If you use MATLAB on UNIX and the platform for the server is different than
that for the client, there may be problems with the display of graphics on the
client. See the Technical Support Web page for a solution that lists the
combinations tested and any known display problems with them.

Sun Solaris 16-Bit Display Not Supported
Sun's Java VM for Solaris does not support 16-bit displays. Therefore you
cannot use this configuration with Release 12. Use another display mode
instead.
8-29

8 MATLAB 6.1 Release Notes

8-3
Sun Solaris Arrow Keys Not Working
On some Sun Solaris systems, the arrow keys on the main keyboard are not
working properly. Instead, try the arrow keys in the numeric keypad.

Alpha Shortcut Problems When Using Emacs Key Bindings in Editor
On the Alpha platform, if you set the Editor/Debugger preference for key
bindings to Emacs, the shortcuts for Undo (Ctrl+_) and Copy (~+W) do not
work.

Display Problems with Xoftware
If you use Xoftware on a PC to run MATLAB on a UNIX platform, you need to
do the following to avoid display problems:

1 Go to the Xoftware Control Panel.

2 From the Options menu, select Configuration.

3 Select the Window tab.

4 From the Options listing, select Concurrent Window Manager.

5 Under Settings, select Off.

6 Click OK.

Documentation Updates

Editor/Debugger Example - Graphic and Information Incorrect
In the printed book Using MATLAB (Version 6), on page 7-19, the graph shown
is incorrect. For the correct graph, see the same page in the Help browser at
MATLAB -> Using MATLAB -> Development Environment -> Editing and
Debugging M-Files -> Debugging M-Files -> Trial Run for Example.

On page 7-29, in “Correcting Problems and Ending Debugging, Completing the
Example,” step 3 is incorrect. It should instead read “In collatzplot.m line 12,
change the string plot_seq to seq_length(m) and save the file.”
0

Known Software and Documentation Problems
interp1 Extrapolation of Out-of-Range Values
A new argument enables interp1 to perform extrapolation for out-of-range
values for all methods. It also enables you to specify a scalar to be returned for
out-of-range values.

The PDF version of the interp1 reference page incorrectly states that the
default for all methods is for interp1 to perform extrapolation for out-of-range
values. In fact, interp1 performs extrapolation as the default only for the
'spline', 'pchip', and 'cubic' methods. For all other methods, it returns NaN
for out-of-range values. This behavior is unchanged from Version 5.

The HTML reference page for interp1 is correct.
8-31

8 MATLAB 6.1 Release Notes

8-3
2

	MATLAB 7.0 Release Notes
	New Features
	Desktop Tools and Development Environment Features
	Startup and Shutdown
	Desktop
	Running Functions—Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Editing and Debugging M-Files
	Tuning and Managing M-Files
	Publishing Results

	Mathematics Features
	New Nondouble Mathematics Features
	New Class and Size Inputs for Inf and NaN
	New Class Inputs for sum
	New Functions for Numerical Data Types
	complex Now Accepts Inputs of Different Data Types
	Bit Functions Now Work on Unsigned Integers
	New Function linsolve for Solving Systems of Linear Equations
	New Function accumarray for Constructing Arrays with Accumulation
	Enhancements to Discrete Fourier Transform Functions
	Enhancements to lscov
	Enhanced Functions for Computational Geometry
	New and Enhanced Functions for Ordinary Differential Equations (ODEs)
	New Output Function for Optimization Functions
	New Support for Interpolation Functions
	Enhanced sort Capabilities and Performance
	New Input Argument for Incomplete Gamma Function
	New Function quadv Integrates Complex, Array-Valued Functions
	New Form for Generalized Hessian
	New Output for polyeig
	New Trigonometric Functions For Angles in Degrees
	New Functions for Computing Logarithms, Exponentials, and nth Roots
	Overriding the Default BLAS Library on Intel/Windows Systems

	Programming Features
	Case-Sensitivity in Function and Directory Names
	Differences Between Built-Ins and M-Functions Removed
	MATLAB Stores Character Data As Unicode
	New Calling Syntax for Function Handles
	Arrays of Function Handles
	Anonymous Functions
	Nested Functions
	Summary of New Functions
	New Features in Regular Expression Support
	Functions that Use Regular Expressions
	Changes to Error Message Format
	Cell Array Support for String Functions
	Freestyle Date String Format
	Additional Class Output From mat2str
	datestr Returns Date In Localized Format
	Form and Locale for weekday
	String Properties
	Bit Functions on Unsigned Integers
	nargin and nargout Now Work on Built-Ins
	nargchk Has a New Format for Error Messages
	Using strtok on Cell Arrays of Strings
	Protecting Files from Unwanted Deletion
	inmem Returns Path Information
	Accessing Cell and Structure Arrays Without deal
	Calling Private Functions From Scripts
	New Features for Nondouble Data Types
	Unicode-Based Character Classification
	Compressed Data Support in MAT-Files
	Comprehensive Function for Reading Text FIles
	Saving Structures with the save Function
	New Data Import/Export Features
	MATLAB Performance Acceleration
	“Using MATLAB” Documentation Is Now Three Books

	Graphics and 3-D Visualization Features
	Plotting Tools
	Code Generation
	Data Exploration Tools
	Annotation Features
	Plot Objects
	Group Objects
	Linking Graphics Object Properties
	New Behavior for Hold Command
	Enhancements to findobj
	New Axes Properties
	New Figure Properties
	New Rootobject Property
	New Dialog for Exporting Figures

	External Interfaces/API Features
	Saving Character Data with Unicode Encoding
	Saving Data in Compressed Format
	Large File I/O for MEX-Files
	New mx Functions
	Automatic Registration of Automation Server on Installation
	Support for Multiple COM Type Libraries
	COM Interface Supports Custom Interfaces
	COM Data Type Support for Scripting Languages
	Additional ProgIDs for Latest MATLAB Version
	Connecting to an Existing MATLAB Server
	Graphical Interface to Listing Available ActiveX Controls
	Graphical Interface to Creating ActiveX Controls
	New Functions for the MATLAB COM Interface
	COM Interface Supports Dot Syntax in Commands
	Enumeration in COM Method Arguments
	Event Handling for COM Servers
	Callbacks to COM Event Handlers Written as Subfunctions
	Event Handlers Can Be Function Handles
	Java Interface Adds Dynamic Java Class Path
	Locating Java Native Method DLLs with File librarypath.txt

	Creating Graphical User Interfaces (GUIDE) Features
	New Container Components
	ActiveX Controls
	New Toolbar Component
	Menu Editor Enhancements
	Layout Resize Behavior
	Key Press Detection
	Edit Text Box Scroll Bar
	Setting Uicontrol Focus
	Multiple Selection in uigetfile
	Program Suspension Time-Out
	Standard Dialog Box Push Buttons

	Platform Limitations
	Graphics Platform Limitations
	Cannot Dock Figures on Macintosh
	Plotting Tools Not Working on Macintosh
	Not All Macintosh System Fonts Are Available

	Upgrading from an Earlier Release
	Desktop Tools and Development Environment Upgrade Issues
	Desktop and General Changes
	Command Window
	Help Browser
	File Operations, Workspace, and Path
	Editing and Debugging
	Source Control

	Mathematics Upgrade Issues
	Integer Data Type Functions Now Round Instead of Truncate
	max and min Now Have Restrictions on Inputs of Different Data Types
	Changes to Behavior of Concatenation
	Changes to the Behavior of Sum
	FFT Functions Applied to Integer Data Types are Becoming Obsolete
	New Warnings for Complex Inputs to atan2, log2, and pow2
	New Names for Demos expm1, expm2, and expm3
	Matrix, Trigonometric, and Other Math Functions No Longer Accept Inputs of Type char
	Colon Operator on char Now Returns a char
	Obsolete Functions

	Programming Upgrade Issues
	Making Release 14 MAT-files Readable in Earlier Versions
	MAT-Files Generated By Release 14 Beta2 Must Be Reformatted
	Reserved Bytes in MAT-File Header
	New Features for Nondouble Data Types
	Case-Sensitivity in Function and Directory Names
	Differences Between Built-Ins and M-Functions Removed
	Function Handles and Backward Compatibility
	Changes to Error Message Format
	Regular Expression Functions No Longer Support Character Matrices
	bin2dec Ignores Space Characters
	isglobal Function To Be Discontinued
	getfield and setfield Not To Be Deprecated
	Warning on Concatenating Different Integer Classes
	Mathematic Operations on Logical Values
	Reading Date Values with xlsread
	64-Bit File Handling on MacIntosh
	Importing Dates from Excel Worksheets
	Change in Output from xlsfinfo
	Change to How evalin Evaluates Dispatch Context
	Warning on Naming Conflict
	Enabling and Disabling Warning Messages

	Graphics Upgrade Issues
	Plotting Tools Not Working on Macintosh
	Backward Compatible Fig-Files
	Figure Window Menu Changes

	External Interface/API Upgrade Issues
	Changes to MAT-Files
	Optional Input Arguments to COM Methods
	Display of Interface Handles
	Identifying Dependencies When MEX-Files Don’t Load
	Recompile MEX-Files on GLNX86 and Macintosh
	Shared Libaries Now In /bin/$ARCH

	Creating Graphical User Interface (GUIDE) Upgrade Issues

	Major Bug Fixes
	Known Software and Documentation Problems
	MATLAB 6.5.1 Release Notes
	New Features
	MATLAB Interface to Generic DLLs
	Relational Operators Work with int64, uint64
	Reading HDF5 Files
	Reading and Writing Data with JPEG Lossless Compression
	Reading and Writing L*a*b* Color Data

	Major Bug Fixes
	Seeking Within a File
	Reshaping to More Than Two Dimensions
	mkdir No Longer Fails On Windows NT
	Using sqrt with Complex Input
	Multiplying Matrices with Non-Double Entries
	Sorting a Sparse Row Vector or Matrix
	diff Produces Correct Results with Logical Inputs
	Opening Modal Dialog with Third-Party GUI Open
	Serial Port Object with Latest Windows Service Pack
	OpenGL Problem Using Notebook
	Lcc C Compiler Fixed to Handle Large C Files
	Bug Fixes in MATLAB Interface to COM
	Bug Fixes in Creating GUIs

	Upgrading from an Earlier Release
	Rebuild Macintosh MEX-files
	Function and Data Type Names in Generic DLL Interface

	Known Software and Documentation Problems
	Using xlsfinfo on Systems Without Excel

	MATLAB 6.5 Release Notes
	New Features
	Development Environment Features
	Mathematics Features
	Programming and Data Types Features
	Programming Tips Documentation
	Graphics Features
	External Interfaces/API Features
	Creating Graphical User Interfaces (GUIDE) Features

	Major Bug Fixes
	Platform Limitations
	Patch Required for HP-UX 11.0
	Development Environment Limitations
	Mathematics Limitations
	Graphics Limitations
	Creating Graphical User Interfaces (GUIDE) Limitations
	You May Need to Overwrite the MATLAB Default Choice of BLAS

	Upgrading from an Earlier Release
	Development Environment Upgrade Issues
	Mathematics Upgrade Issues
	Programming and Data Types Upgrade Issues
	Graphics Upgrade Issues
	External Interfaces/API Upgrade Issues
	Creating Graphical User Interfaces (GUIDE) Upgrade Issues

	Known Software and Documentation Problems

	MATLAB 6.1 Release Notes
	New Features
	Development Environment Features
	Mathematics Features
	Programming and Data Types Features
	Graphics Features
	OpenGL Renderer Feature — Microsoft Windows
	External Interfaces/API Features
	Creating Graphical User Interfaces — GUIDE

	Major Bug Fixes
	Development Environment
	Mathematics

	Upgrading from an Earlier Release
	Development Environment Issues
	Mathematics Issues
	Programming and Data Types Issues
	Graphics Issue
	External Interfaces/API Issues

	Known Software and Documentation Problems
	Development Environment Problems
	Documentation Updates

